{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Dispersion: prism\n", "\n", "This code is the same as \n", "PrismRefraction.ipynb\n", "except that here we are going to use three colours.\n", "\n", "We can set the refractive indices for each colour separately and hence explore **dispersion**.\n", "\n", "\n", "\n", "\n", "The images we create is iconic. Newton's in his so called *experimentum crucis* studied prism refraction of sunlight adding a second \n", "prism in the red path to show that you cannot split a primary colour. However, the claim Newton made was not actually \n", "true as the red light still has a range of wavelengths which diverge after a second prism.\n", "\n", "The image is also iconic as a similar image was used as the album cover for Dark Side of the Moon by Pink Floyd in 1973.\n", "A good exercise is to see if you think there is a problem with their back cover?\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we explore the code that generates the images in the interactive figure above.\n", " \n", "The Jupyter Notebook is Disp.ipynb see\n", "\n", "https://github.com/opticsf2f/Opticsf2f_CodeBook\n", "\n", "
CLICK HERE TO ACTIVATE CODE CELLS
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import time\n", "import matplotlib.colors as colors\n", "from numpy.fft import fft, ifft, fftshift\n", "\n", "import matplotlib as mpl\n", "mpl.rcParams['font.family'] = 'serif'\n", "mpl.rcParams[\"text.latex.preamble\"] = r\"\\usepackage{amsmath} \\usepackage{amssymb} \\usepackage[bitstream-charter]{mathdesign}\"\n", "mpl.rcParams[\"text.usetex\"] = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This cell defines a few functions. We shall use Triangle for a prism and GBeam for our input light." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def GBeam(zb,yb,z0,y0,beamsize,angle):\n", " angle = angle\n", " za = (zb-z0)*np.cos(angle) + (yb-y0)*np.sin(angle)\n", " ya = (yb-y0)*np.cos(angle) - (zb-z0)*np.sin(angle)\n", " zR = np.pi*beamsize**2\n", " q = za-1.j*zR\n", " return (-1.j*zR*np.exp(2*np.pi*1.j*(za+ya*ya/(2*q)))/q) \n", "\n", "def Triangle(x,y,x0,y0,size,angle):\n", " return ((-y-y0 + size/(2*np.cos(angle/2))-np.tan(angle)*(x-x0) > (0)) \n", " & (-y-y0 + size/(2*np.cos(angle/2))+np.tan(angle)*(x-x0) > (0)) \n", " & (-y-y0 + size/(2*np.cos(angle/2)) < (size*np.cos(angle/2))))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we define a grid in units of the wavelength. $dy$ and $dz$ are the spatial resolution. \n", "$\\lambda/50$ for the values given below." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "zmin = 0 # z is the horizontal axis so like x in cartesian system\n", "zmax = 160\n", "ymin = -80 # vertical axis coould be x or y, call it y to agree with standard axes\n", "ymax = 80\n", "dz = 0.1\n", "dy = 0.1\n", "zoom = 1\n", "Z, Y = np.mgrid[zmin/zoom:zmax/zoom:dz/zoom,ymin/zoom:ymax/zoom:dy/zoom]\n", "z_pts, y_pts = np.shape(Z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the $k$-space grid." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "kymax=1.0*np.pi/dy \n", "dky=2*kymax/y_pts\n", "ky=np.arange(-kymax,kymax,dky) # fourier axis scaling\n", "ky2=ky*ky\n", "ky2c=ky2.astype('complex') #Notes on complex types http://www.scipy.org/NegativeSquareRoot\n", "k=2.0*np.pi # k=2pi/lambda with lambda_0=1\n", "k2=k*k\n", "kz=np.sqrt(k2-ky2c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the propagation phase the appear in the hedgehog equation." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "ph=1.0j*kz*dz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define triangle that will become our prism" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "PSize = 60\n", "PAngle = 60*np.pi/180\n", "PCentre = PSize/(2*np.cos(PAngle/2))\n", "PWidth = PSize*np.sin(PAngle/2)\n", "Prism = Triangle(Z,Y,zmax/2,0,PSize,PAngle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The next cell generates an image. Change Index and Disp to vary the three refractive indices." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--- 1.1082289218902588 seconds ---\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAk6AAAJOgHwZJJKAAC5aklEQVR4nO39a5odx5EmDL4WiSsJMpG4g7oVQD4z85eEegUQagNodq8AYm0Apa4VNFraAEq1A6pqA6C4AoHSM3/mm68HIKvUpSrdmElIom5Ehs0PdzM380tEnJMncUs3PAcZ4ffwiHjtdXNzD2JmRpcuXbp0ORIyPO8GdOnSpUuXZycd9Lt06dLlCEkH/S5dunQ5QtJBv0uXLl2OkBxrRRDRs2xHly5djroQgJpbSQ5FPBE3F88mgmrh8YQI1HBxqQa32t4QqZqLEtsXFKqoNbqdp+an0wT9Ll26dHlmsiJoNmUR4GMa8EFFWyabNsWPCQBzNdEywE9xKeVcRyUlUZMO+l26dHlxZRWWvzhuGlxXsnF4yl5KBfCX67cpJp83oJa7Htdt+l26dHn+clCzztK4PJKriWab5opqtr2es87YW40OSog0zCqCWp5plg900O/SpcvzlBp21WQjS0hbdnxObVla7SzDzxNOldwGfDnz1UxPZJS2fy8d9DcsN2/exP3797G7u4sPP/zw0Ot79OgRmBnXrl2bTXv37l08fPgQzIzd3V08fPgQd+7cOfQ2dumysqxi0Vhn4lYjDcDyMv0zK8ryyQS0JhGmAX8+vFL1nEbihiD1SP9N/La3t/nOnTv84MGDog8//PDDQ63b1nnt2rVmumvXrvGjR4+YmfnBgwd8584dvnv3Lj98+JCZmR8+fMjb29vPvS/7r/8AMCj7bSSO/C/45sRfOCfzQ+tXlLHkN5hjFPX6Xy1uaR6YtofzKrZ30D/Y7+bNm/zo0SP+8MMP+d69e3z79m0F2MME/Xv37rn7NQX60p779+8XcR9++KEC//Puy/47Yr8cmG34RkF/CvBDPGFF0G+mQXa+KuC3AX054HfQf+a/wwb927dvK2ufA31RDru7u9X47e1tLePOnTvPve/674j8aqBtww8V8AMoksQfGuCvAt7r5Enx5NKk8A76z+h3mKB/7do1ZmZ+9OiRA+wW6IvUWL78RHk8evToufdd/x3h32EDfs7yKaTZjFkH7bxNs82S8Fa5Pp6KsPCryVoTudeuXcPt27dx//59PHr0CA8fPtS4mzdv4sGDB9jd3cXu7i7u3r27ThVdKrK9vY2PPvoIAHDr1i08efJkMv3t27f1+Ec/+lEzncS9/fbbePfddzfQ0i5dnpOwOa7OhXKKYiqja9JcyCXxXKlsUckx30GWHM/XUCZeg+kLk7Us8tq1a44xWpmyN7+Kv8Ni+tK/N2/eLDR5rY/v3r2r8VMTte+++66mu3379nPvv/57hX8vgB2fACbagB2fSEcLdRv+YTN8xLa3+3tjTP+dd94BEeHx48cAgOvXr+OTTz7Bj370IxAR3nnnHXz3u9/V9NevX1+nmkVy584dcDBTHfj36NGjQ2vnQeX+/fu4desW/v7v/x4ff/zxojxvv/22Hk+NCr744gs9Psx71aULeMU0m3DP5CwjEZhLhKzKYn/8WoAc19j6Jhg+gcHNph3KNgwCKtevX8e1a9ccsPz4xz/W493d3YNUMymffvqpmjwOKhb8XiS5c+cOPvjgA3z00Uf4wQ9+sDifAPje3t5kus8++0yPraLo0uWZyCac41uAbyJJ4riiE2p7I8yuFWCTKNcOLcCfC29VzFkTl/jr12Vt0Le23xs3bhRM8uzZs3r8s5/9bN1qZuXjjz9ezHxfRnn33Xfxwx/+EI8fP8bf/u3frpT33LlzK9e3Tp4uXSZlyia+qa0WWmJ2meRWnjnAb8UVBS4B/KXbgtpGcaUZ7SHTXNesvSL329/+NgDg8ePHVdOBxH/yySfrVnHkZXt7WxXarVu3Vs6/zgjrMEdlXY64zJl2Nm7W8SYdQrSM27wty0utXiCZ1V14CdDTF9AKrwH+QQZCG95w7caNGwCCeWUq3pp5gODds7u7W9jTZVuAu3fvYnt7e91mvVLy8ccfY2dnB9/5znecCWapyL3Z2dmZTGe3cJB5mi5dNio1zFsHzVay42dR3GjKqvb6WYbfKmiJJssVyJJJkDQ/kLZno2bOAzP9n/70p9X473znOwCAn/zkJy78448/xrlz57C3t4e9vT0QEYgIN27cwMOHD/H973//lTbXLJV3333XKc7W5LPIp59+qmGyn44F8ClFak1xLSXepcvKMrWZ2rpmnWp4acdXyKMIhDngS9sW2/HzIUIrcWufnSWbCZVpak2s55Ut1mqmIC9r2/QFkHJQBwLAyIRgzvRFdnd3nf34s88+w9/93d/h+vXruHXrFm7fvo1/+Zd/mW3HnTt38MMf/nCdSyjk8ePHeOeddzZS1iZkjnWfO3dOWfze3p6aZuSvBfBvf/vbTWVqPXY66Hd55rKmWScAYgUo2Xq0pPhphs9w++zP2vFzOK7Z66cAvxbnRwzLAV8Yvi+lJWuBvp3ErTF9GQXs7e3NLiDK5aOPPsKtW7fwX/7Lf1kE+q+q987PfvazRQpI2P6NGzcKE5Dtv/fff78J+jJf8Pjx40OddO9yxGRVX8IpqeAp1+Is4FMlbbX+mjuPTZ+bdTYN+HN+oTVZ39K/FugLqAOo2poFROxK3VXl888/X5TuZffe2d7exj/8wz/g888/X8kdc6n8r//1v/C9730P/+2//Tf83d/9XbX+Dz74QNN26bIRaeHYOmadRXZ8VmwOUTRdf4GvrfQ1wM8bsymGn47bLJ+KeDJtWOThs86K3Pv37zNze2dGWTk6tXPjo0ePqpuASd6XeRXvKityZZdL5un9cVq/JauepT337t1r1t932ey/jf1aq2en4lZYdUsaZ1fLxpW2mr6yira6stakrcbBhA9c7pq5dKVtLa61enfqR8X2yfUVxSGuJgdi+i0mL7b6Gzdu4P79+3j8+DG++OIL/NM//ZNLZ71Krl27hu9973u4desW/ut//a9reas8L9ne3sa3v/1tnD17FufOndP5jPfeew83b94EEOzsNdOJtacf1mrYW7du4aOPPsL3vvc9vPfee7rXzgcffIAbN27gk08+0XZ26XJg4Ub4oXnrJMt+IOSRDbNPXgpP2PE55qEyXP8enOEnxt7qNBEy/6ew+sBlpqx1mL5Iayve27dv8+7uLjOHfXju3bvH7777rksj7FPSSdqXkeHbPW6mpLb/zc2bN3l3d5cfPXpU9NGS3xKmb9spH04Rdt+3U+6/jf4Oc8tkmC2ElZ0nhh9Yfggv2O/k/jlzDL/Gyg/K8Fv77Ld+9pqkL2r7Bvl8VWxfB/Q38cvNO/brTuuA31H9rQL6/dd/h/qbMetQ/DXzLAB8KjZSW9esswrgz/2kzVNxZTxV8+Z9l9LmAD8H+MAGN1w7DPnss890Avgf/uEfnnNrXh6RdQ4vkzmsyysqFqZseMuCssR13Z2SXxfFxmEzM+u06+D5uleyQ0llUyadMj6YdfK8rneqZbLqQ5uDUeSdWCNxoA3XNi2fffYZPvnkE7z//vvPuyldunRZRYw7SQvYuYh02dr4ySHQZW0APtiUVzjIVADfF9rG36qsB/j1vG3AL9VFPUez+kxeGKYvIou5+sRily4vibQXlGowoc7AC8DPxY4aKAYUgB8ZcAtnHeCvOnHbkvUBn5Tjt0YUNcD3myjPMvwJpk/Rfl9GUKtBm5Hd3V3s7OwU9Vy7dg2ffvopPvnkE7ceoEuXLi+oGLLqmDtl0QtwksgrAm/WYR9uFQdXKtRyTMUK7Bb21gX8amUTcTa+NdyoM/wA+M0hSlNq8P7Mmb5suCbumru7u+6zfp999hn+/u//Hjdu3AAz4+HDh30Dti5dXlTJrBM100qYUfRZHBGtAb6REvAnaGyReQHgS/yBAR8zcaxKbJXy/GdSKuzeZl/QNc+N6S+Ra9euYXd3d+WtHLp06fIMZIp4kgd1roQ7G3+FMBcs34SJqWeS5VfNOhb0Z7RNITWAtmOb6aEM5fMSWXm2JG/WsSETDaU8msA8lsleZNDv0qXLCyoZuDbNOq2JVcABVMusEwh4KoRiYmW/SwC/yvIzZbCWHX854M+ZgXK8FvUw2yzJWLsBQBX0XyjvnS5durxkwhmcURGNWrQDuMaIgcnn1s8dokpqy4ZJxHMF/Fp4Cfg+9QqAXytyOvDF8955FeTmzZu4f/8+dnd38eGHHx64vO3t7cUfd5+b/7h79y4ePnzoPlwj++936bJIKsDOWbg1w0sA5ZlieG6ltpO0kjaEJZAtzDqu7BcJ8FtlhTy5ElwZ8AvNR5VEeROe04rcV+m3vb3Nd+7c0c3irCzZdG1J+UulttUD4Fc8P3jwgO/cueO2ZXj48GEzb//1n/6q2yL4ODJbI+ThyFbdUhZOoCJM6qG47UIKz1bWUmWFKw3Z6lqkPIew2rbc+Gw+vd1AjWp93roHlfLyuqrY3kH/4L+bN2/yo0eP+MMPP+R79+7x7du3V9ppc+4noP/gwQN+9913J3+tMqQ9tZ08+06b/bf4V2yLYLdAQAL3LE++BUMA8XZ4qicCI1GmCA4I+ItAPytvJQCfL68G+ItBv1J/WRd10H+Wv8MA/XXLunfvHjNzdStrWz5zexO9/uu/JsvPAD9n/zVwd8zfgn7B8Mnnj4qgAPxCGawD+LVN0Kbi4PJTJWwp4K90Dxr119LXpNv0j4B873vfA4Dm/MKTJ0/062OStksXJ5VJQ64l4TzAZONGFEdrtHPCifZpcslQfpQ8xrAplciESU5jw88brvWxSW9bWYvzVzG9ytaXR9W4CSHzKwLzsNZZkpVB/9q1a7h9+zbu37+PR48euT31b968iQcPHmB3dxe7u7u4e/fuqsV32bDYhW+yj35NJO7tt992n8Ps0sVJxCiFnNo8qjnW+UYL+HbCl305nKWV0grAJxPv0ucTtAbwm3OtNTeY5YCPFQDfxywAfDvTrQqr5g3ktVnr3gBrgP5HH32Ef/7nf8YHH3yAt99+Gw8fPsS1a9fw4MED/PjHP8b169exs7ODnZ0dfP/738e1a9dWraLLBsV+mGXq85U27rA+5tLlJZXMU0RPK9ijsEMel4uyEMBd7ESaLIJaYP4NUKy6KgqwW/Bjn7jJ8CWyNnaZB3zP36f9KFNtM4AvQ5+iD6bcP2OKqJFbNawM+u+88w6ICI8fPwYQAOKTTz7Bj370IxAR3nnnHXz3u9/V9M8CQO7cubPYpXHu9+jRo0Nv77py/fp13LlzB/fv38eDBw/w4Ycf4u7du5PMXL7iBWByZbP9KHwH/S4qLa+/PNmUWceE58yfTJiwfu+embH8lt+nFJYyNBpfHYfkV4M2eJfhXE1b5lkM+ADczEg7URGyZE3t2ouzBEyuX7+Oa9euOUCRnTKBsLfOYcunn36qNumDigW/F01u3LiBH/7why5MtqH+6KOP8P777xfALgC+t7c3Wbbdj98qii5drFBxkEFnhs1VOz634DhldmW2AL+okEvAt2TdKYIc8GOjmLK4acCfUiwC9exi5hh+MeyZqb/MKrEt/F8L9C2zvHHjRgE0Z8+e1ePad2E3LR9//DE+/vjjQ6/necmTJ09w9uxZ7eft7W1cv34d3/nOd9TMduvWLXz88cfFzqTyveJVZJ08XV5ByTCmBvgSV4XGhh0/Z/4W2AuTzqKJ2yyuatKZAfyirhJwk/7YLOCncls2mRmTDpXqYIrwr+W9I8Dy+PHjqslA4j/55JN1iu9SEdvPT548wc9+9jP84Ac/wDvvvKOjnBs3bhST5+uMtJ7F6KzLiy1VK0rlNDfrLLHj52mJZd9MXxG3Jm5dQA7wLSCeAfzJiVsyZ7X0vs4a4E/ZaRTwp0xXC8rJYzdm0wcCuADBrDIVb808Nbl27Zrap3d3d3VrgAcPHnTPnxXkb//2b/VYPjkpIvdItrJuiZ1wl/maLkdXcoJNlfApOz5QgS2x2Tt88yuzJJ+zk+eAX2tEEwtrgN9sIWqAn2C9pXDKPEsB35XjRiVT7ZV5D5S6Ar5va3Igpv/Tn/60Gv+d73wHAPCTn/ykWca9e/fw6aef4vr16/jHf/xH3LhxQycqr1+/3r+Tu6LIqCo371gAn9qXx5rkWsq8yxGRJXOYjSQSoLCV4aK3kpNh/mygtGbmqIB7beKgyCMmoPyi5k00Nq78nm0d8Mvt0+ZkKZPPAL9ybFvCTO1+WWdFrsjt27eLOLu6s7WXy/3795mZ+e7du9X4O3fuNFePttJvSh49erS43qnfJlfkLvnJvj95v92+fVuv7ebNm838Nt3Udg799+r/6vvewK+8RX1vnTy8tRI3pKVixS3lq2Xn9tuZ3PLArM6F/JZsr2BX2bZW55YrdOvbMGT9a/qvXndeV3lviLJ+zO6NzVeTlSdy7SRujekL09zb26va+99991188MEH+OSTT/CDH/ygWsfDhw8nfcpzOQreO9vb25Mul9LvuUntX/7lX/T4/fffb054i1no8ePHz2TyvcuLKc2vV9k07sT84TKtC1BTBJm0rPm5qKgaUG9UEWEYPttw05ipfHqUp5+eE0hNajROr3uK4ed1xNCaxQvZ5U3VrdENQYMFWFZdi5d9Xh48eFCNF0Y6xTpfhd8qTH97e5vv3btXHfm8++67vLu7y8ztkdPNmzcnWXrfe6f/Fv1qe+FgNZZvy3LMX9ORZ/OOrTYYvt1vZ5blm7Q0GJa/GsNHdS+dOsNPI4Kle+nMjAYmGH7O8pH3m7lvwIZ22RTTTGtHRgH1VvwcgL0qv1VAX3a5ZC53wbx7967GzSmFlrnMtufevXvN+vsum0f7t3GzTpE27pYZwalp1jkQ4Mf0KwH+TFkzgD9loqGin+cAv35f1gF8YEPmHTEjtMwv4uN948YN3L9/H48fP8YXX3yBf/qnfwKQvEhete/ebm9v49vf/jbOnj2Lc+fO6QKn9957Dzdv3gQQXCFrphO7AjZfDfvDH/5QffH/4R/+AefPn8dPfvITnDt3Drdu3cL777+Pvb09fPe739U+rsmtW7fw0Ucf4Xvf+x7ee+893Wvngw8+wI0bN/DJJ59oO7scPVn0dVS2GcwfNtGVidtg1sk9VMJhMOsYE0xu0qm5bdp2FI0jlAucbFwrf62sVsWcheeiRqysT1ZzvwTQXHDl+syU1Zrk9dWuyPTnzAC3b99W5vno0SO+d++emhysGaGW9969e/zw4UP3e1nMQJaRT0lthHPz5k3e3d3lR48eVc0z29vb+sET27cffvjhJLtvtVM+nCLsvpt0jviPFrB8NFj+RFgqwzJ8cmkL1u4mbivhSxk+LWf47W2OS4ZPRXyjTNn/v5m2fi+sOaw2UVuYwTKGT9lxTZ75h9GluuvXr7ul/yLb29v47LPPsLOz41ahdunS5XBE5zrZh7kgLgkrmfRupwT2YUCAVDYFJS4Mt2Ar1Vhj/xOunJbha6GugEq+/HOFefqWm2erzEa7mnGZmIFIe0wwzfDzWscKvD/z/fTFrCC+/Lk8efIEu7u7Te+fLl26bE5q3K6wolQAv4VbVcDXI1OQDB9mAF99YngG8JEDfnZB7jo9rG4a8GkNwHcbzzVz2H5JbWoBfusWPXPQ/8d//EcA/WMdXbo8d8lN3xJEdcCvZA1JKsxfUiUs9zvP5COLKsMHwGWhZXq3xJfLeIfZieHnsG/b7etZCPgEgNpbquXrdGtF5im0n9gDfkutzAE+8BxA/+OPP8Y//uM/4u2338b9+/efdfVdunQBjIkFbUzLkKPG8quAT/qfB3xyCUz6OuCHcLLDhqwBOYVng5IFvdc89jK4KGsK8PP6K8Ea5eu2QJ1FNCdfw6X4NlnFkaddAvjAAbZWPoj83d/9HYDgOfLtb38b//N//k/89Kc/xe7uLq5fv953eezS5RlJDe+rYSayhd0Sln9WpAr4irUtztqw4evkgJ1EiOkt4M8gYMPIksW2AD9dHxdxrlFIveFrkUtoAnfFlEWVdEW+SotzeeYTuVZu3ryJDz74AO+99x7efvtt7O3tYXd3Fz/96U/x0UcfTbogdunSZU2hOrjkno6FCacWBmQTugbwheUvBXwXXrPhSyKp2EAdZ3EVKQcxtRFDYYSqluIAn5BPTmj+mr19FvBhEk2UM3fOAGrw/lxBv0uXLs9YWoAf/yvs+0iAX4TFtAnTKcNza9bJgD0fMtQUQYXtloAvF2Lj4PLWjUNLAL/k8mIeWsLw86ZYpTphRWsCfp53DvCBOug/F/NOl83I9vY2vvOd7+D69etuAVyXLquIxeQc3KthM4AvkQXg2wJrgC8HtX2d2cLdBMPPGi4WfPZQiDLxVFxqSBm6QcDPFesagD93BSHBiouz+u/5/27evKnbXYg8q908++8l/tV2vUS2AEjC4Jfzy3l9EZfZHoEo228n3zoBafFVvoWALr4yC6IoX2Ali69sXGvBlt1CYWp7hVY+uPSEgWli7x27wIsq/Zv/kPVl3u+08NzmzcuqYnsH/c3+bt68yffv3+fd3d2NA/H29rYD+3v37vHt27f52rVri/Lb1bi7u7t9Ne5R+rUAH2V4Di4urFihSw70lwJ+vumaVwJzgD/Mbqus2zZjqKy2bQF+a8XslPII8XYLZtd3U/vmoHIvYtuLchrnU3Ed9A/pt729zXfu3CmY96bZ97Vr19wmbqtsWGfzPnjwgO/cueMUwMOHD1/5DfCO9K+1EyY2C/iw+VZl+DXA13YZ9t/acI3SNgmJda+74RqK9HWGD04s3/cVKiC/DPCzcibO8/y1tB30D+F38+ZN3QdHmPemP6Cyvb2te+7ku3Au+Ul7ann7Dpuv+C8HHBPXZP6ohM2adSzgVQBf21JTBBbwhwT4ubln4YdTDgr4iW1n7ZoBfNi+q5hyVgX8Vcw4rfvXQf8Z/TYN+gLM63zVq++lf0R+DUCZZfn2HHWAqY4GqMHyZwCfaoBPmekkZ/iU2/GXmHTqIL2E4ZNLOwX4FTDOlOwc4Nt+r92DVQC/dt5B/xn9Ngn67777rt6TdT5jKDI1QhDT1KY+Fdl/z+G3KuBjPswB/oxZJ9RHGejbdjQYvgX86g6bEzb8uJOlNenQBEgvBXw/UqiVVQHnihlnitnXymkp3dY9b6Y1k8Q1WWsbhmvXruH27du4f/8+Hj165PbWv3nzJh48eIDd3V3s7u7i7t2761TRJYp8IH5vb2/lzxjevn1bj2Wju5pI3Ntvv+0+h9nlJRGaCePVkldFyyB4L0tO4S49m2AyZXAWRpX2ygkZvK20mRlgq/HEbTRPP3d1bFIFtEzhUjLcz+U0l1fETfQ9mf9tMtujXKT3xy5ttXEVWYfpC5O1LPLatWuOMVpZ6l3yqvw2yfRzpn737l1+8OAB7+7u8u7uLj948KC5p77d439qotaOJmofu++/F/g3Z9bBQkZfCyvMOpSZdVLaKsM34UTk20uWTc8w/JlPI5Y2/OV2fLHJlww/t/HX2Xhtv3ty11Lv903a7S2zz5+HjTH9d955B0SEx48fAwh743/yySf40Y9+BCLCO++8g+9+97uaPv8a1Cblzp074GCmOvDv0aNHh9bOdcSy7nPnzmF3dxff//73cf36dXz66afY2dnBrVu38P3vfx8PHz7EtWvXXH75ehcw/aUy+zH4w7xXXTYs1DgV8szhL1fS2LCpstkGuDDWSNl6IZyYks2KJGb2DWTTEmloQVMbF0DCx2WxVH5VtfLKywtMmh1y5uW0SmBTfF4bA/H6XO9Vj7lyXGP41TpyZi8RMzf3QCtyBVSuX7+Oa9euOWD58Y9/rMe7u7sHqWZSPv30U3z00UcbKcuC34sg8mlKIHx28c6dO/iXf/kXl+bu3bv4/ve/jxs3buBHP/qRyyMAvre3N1mP/ZiNVRRdXhJhAwyzdhovNQCiIjBficpTiX04Z+EF4Nezt7QTAZDVuVxNOA/4qTopYT3Ar5pb9CbUAb8op0jtpRbXvM+zmlwbubp5B/AmgZrpwMbPlfWq/TZl3llqnrHprAeOXYg1V5dIX9n7kvwqLpQ2fIlZpxZWmnUoM+vYtHbi1rZtajLXr7ZNdfkJ2jmTDtYy6QxmwteYdGg1k05hxlnojlkzo9XSz92blimn9tuYeQdILPTx48dV04HEf/LJJ+tWceTl/Pnzi9L94Ac/UDb//vvva/g6I6zDHJV12ZBUzDpsw3k2SyWM3B+uhrFLr4QdnOqsmXooL5iFskdkmmLlpg3EZsyxGsOnyOftlahJh23+BsOXAQqVNZNcA1d7tJDi9phLzOPcVVElb+Vez8naoH/jxg0AwbwyFW/NPEDw7tnd3VU7unj57O7u4tGjR7h79y62t7fXbdYrJZ9//rkez31jQDyorHlH7s3Ozs5kXjsXIPM0XV5QWWAOmbLb16BRYM5bavIwNn+sbcMAvi21AHwBxQT4ZUuQkI/NidjweV2TDrm0XKRtA74AfbMGtkrLe/nY0vOWuqahBHx3nrWhKLQp9f44MNP/6U9/Wo2Xb+D+5Cc/ceEff/wxzp07h729Pezt7eHcuXM4d+4crl27hn/+53/G97//fXz88cfrNuuVEqtQz549O5lW5iMswFsAn1KktuyWEu/yAkjlHXbgwPXXfNq6LaiTEKRk3mzIcAZnFpm8YTsDfC0ACRypRDp3IoqGwVrV6oCfYvK0hBZQ26mHuqJE1h/1EYIbDdSaFw1KvhviCMSMLArAn5TiapwcmOnnoA4EgJEJwZzpi+RmhCdPnuB//I//gU8++QQ3btxY7C/+KnvvWACe86oR4LZAb/PbEUAutuwO+i+olDicgiqIspzlI5pNyoxkTDAO4ISpLwL8rGCti/zXoRyW11g45YlQQmoOnWljZWvSsXlKhZCXXIJnTQFOK1aTvKJhCoavUwtZ/Cy7nwZ7kbW8dywg15i+AMze3t6kq2BNPv30U9y4cWPxJxNfZe+dn/3sZ9jb28POzg7++3//74XnjhXpc6tkbfr333+/OYK6desWgKAwVl0A1uUZSAXw3SH7ZE3yXBSTaQu2pp68kgzwbQ15xQ7wySgCTvW2jNfOTsUZWtqEXL06Mv9L2vpnxCds9+Ykz1n75BQ1kLhm9fIRVvVIHzXGBHPsvjmUqDVsDe+dO3fuTKaT/V4ePHjQLOPRo0dVrxLxfHmZd31cxXtne3ub792711xgZfu61SdTafreO6/Ar+KtQZV0hLr3hw/L9n53m7EZ75XCIyXfJsGGZd4z6r2T7adDSAu7Zr1xTB1VL51yCwWYfXdIPXXk+muLsownD+WeMcn7KO/DVBe5Pq71d+3e2ftj063qmePa2vB0qmL7OqB///59Zm7vzCgrc6d2bsxBf3t7mz/88EPe3d3lmzdvPv8X7QC/VUBfNlNjbu+PI+XV+vPdd9/VHThboC35792716y/77L5gv4aIJCDUA2YpgEffp+YOcB3q2Zj2CTgU5GvCvhuZe4SwM9cO03aGuC79hdgb0DbuV+W7qmlMmiD/ty98/c3Kd7NgL1PV5O1zDtiSrB77lgR08yNGzdw//59PH78uPo5v52dHTx69Ajnzp3Dzs4O9vb28MMf/vClsytvb2/j29/+Ns6ePYtz587pfMZ7772HmzdvAghzGDXTibWnt+z2N27c0LmOR48e4Z//+Z/x+PFj3Lp1C++//z729vbw3e9+t/m5xFu3buGjjz7C9773Pbz33nu6184HH3ygZUs7u7xA0jAL5CP5mpmiZfjQgtyp2bOmNPjH7FyGFQ2rGarlINbhws1sqdbPpo6awcom51hybsuWdbaprZOW7izSNrE1iUo+pY9uzL8UqY2prOiu2XYac1ueeXaCYQ2mP2cOuH37trLPR48e8b1794odInMzzvb2tu5Nz/xy7QFjF0dNSc08c/PmTd7d3eVHjx7N7qJpP3wifXv//v3FprA8f/9y1gv2syxvqVkAC8w65JmtlO9Zvg8LZTUYvmP5tr01Jt8IX9mkUzLacI2e4Rdst8Xw7cIwy/LtSCi7N7URQvX+zZnirJlsCbuvmZ1ylt8ooyYUAb4Qojl1cTARhp9P2F67dg2ffvqpunN26XIkZHrG1SWzL2zLzyWFWaZrP1YuRJOgnusxPCEC1Rl+PqvpJm4lLftwtpFmklfDaq2viLBjrjN8vcaYuD1Z62GP4vWxbaxebu0a/H2oVsQVhl+bqK0icK3Mejvqw4gQwTwWoWu7bB6WfPbZZ3j8+DF2dnaKDcS6dHklZQXAn0tWAD5lpogG4JeWFIMkBvCVC1b9LQU8M8DXQg4X8L1RpwH4MWWZm9JlukjD011bTZuWAD7hcAC/WUa7Lw+04dphi90IrEuXV1JWHFDXoLb2zivgW2xwgG9yUl5WACciwfYE+CGb1UQe8LkG+MWe+/OAX782VkZu0xesvdWptSkHkB/MZMqMKjkA+KkIF5jS2cFRQccXgX3Mk897NEXqmH6oXjjQv3btGt5+++2+HUCXV19mJ9zaSWtZa3ihBVUyeFCyAF8CvhBe36gKw89bMgn4ZcurYB+1VDJU1QC/MVoogD4z/rjBTD3OAXlz+OBBnYC45XTePtRxu8XsJ1X7VPq2PDfzTs1ef/v2bV1oZTcO69LllZMVAH8iqG3WUZznMh1XINcAflIYCfC1LC0oB2qZL1gF8EtWWjGgpJDK9hD2b2HSMRYRlv+kAjmkWCyZxVoy9Zq3pnrP4rRuVi+nTp2+uKp5yDY8K6fRhlXkmTP9mzdv4kc/+pHuESPzyHt7e9jd3cWPf/xj3Lp1q5t2ury6siLgL2H5LlZBOwJ+yzpAVgkkVkp6nupjpykywOcK4BfqaB7wUwrDkAWM2ZdjGf5kf2gzypFFZnDRkQ25jHAY7IVi382A8iJmX6toTvOvBvaa63l573TpciRl6rWqvIlTxpCS5ZPZyDLZ63PccySevcdKNO6kEqkC+GkA0AB8QD50Um+xB3ySdrJPq1tBGMD3ba2biGZNOjaO2WTx7Zzc8Tkz5+T1Zg2YTmMj6nC8tJCy+or3zgtn0+/S5ZWUFcF+rpga6ywAHyXguxxVwPeVeesC+es4IOBrTG5OcoBvis2uuiipSpQ5KZVMTYR6kF00O0VZSoosmp03LsvWFloI9rMFNSr30kG/S5fDltZ7OvOetwE+T1OadIA6U02me196bqE3Bu4UbsJ04Wx+cZOA71qctbEF+IWxJaYuxzlafSZMZbp6p/KMcvbmq7oHTyVsxRFDZQwxU0ilARPJO+h36XKYskHAr5t1yJtwKvUWGMqU7PSuSQnwczu+umt663/B/H1r6xdp20iA/wjJDODXVQDKUEohzkrPNrzesGLck41CFt/TKVOOtqO8lsMEfKCDfpcuhycbnBarF0UOi+xL35wLrAC+s+PXAD+zpavtvQr4BOPv2b6GaG5JdXB2LU2LfTU0m+c1V0RZX3DRjjyHgjFXEi0B/FlT3mbt9lbBLZEO+l26HIasyfBt1lrSBK0JdNlNRvrENSNODvi5cScHfAcqNcDHaoCv5pYC8LkK+MVFuWvxLbdp3IR0BNvanEVmcMraLSt1a3aj7HwOpxfj8uEBPtBBv0uXzcsBAL+WtCzOMNy8UGM5aJmIcvMQu7xOrfiw6qwle0UwCfgclIJTMgaobTWt/JVrQmURlP0Meig6U4xpYJNzf2clafrb5zLL7svk65txJPlqYC/SQb9Ll03Jii++ZJkCeMeQYwhpBDuAcqbiSk2lHd8Dvu7Ew7a8CuAbE0o4b194DvgWiJNbKZtLoUpeG8IepDPAd4oss3GlfmtY9TOFxbW9cmpNasnCez5fUJ5sIdg3knXQ79JlE7KG/b4F+G2zjgVd9ptc+oSFWccBPsG4a6IC+KUZqAn43iierossEeUIoDHWjEKWA760yLbDGmaMScc0m/IOiW1zrjc1TTm3OdoBTDnrA/4M2FduSU066HfpclBZEwDm+BpVzuRj5TUbSK4EqmtVI+D7oNrHz00FvAzwrenEAT5qgM96HfOAn9noyV+h+2BKBvh509leTwqwmbJrRLWv08EC08+kzDw8tfbkkt+OmTZ00O/S5SCyJuBPs3x/pu+0cWcsYLfAHg+isvulAL4tk03KQKBNWHO/mzbg2wjZ7bME/Nr11gG/tN+nnGqrz65LrqFmHvMJa8MlZGlajZtQDGiZcSoFtsB6iSmHG8cTlXfQ79JlXTnAEL9djLNKF/BYBXzkYXXAzyGXMjY/Cfh2hEG1FiMDLw/4lIOswDVl5p7KNWnhUi9x2tWTg4JzeEcW7jNfJVdoo+K88iKNudAppV4F83zU1KprBbDXCifijXTQ79JlHTkA4LdImPcTz/JM1JcDfjq3X8ois4oWan8Rc4e34lMFiOoAR77yGcCXJMKu5wDfKitzdVKHNUfFw5bKrI5Y5jRNtc9lpDCB9tAmZnEmcrKeRtlTemC23Uk66HfpsqocEPDr56UlnsuoGfOtB/yUsAR8VTyGjla3K8gBv9hDP29MqWiSmG9bzQG+KzxXZ1zs9e/yZkcF4B/I576i/Mz1F1sGaUdHRUqYLnuF4Ekb4cQz2kG/S5dVZAOAX+HxykxrloTctFtrgvNLl9JqwFsB/DThmdm7C8BPODMN+FTWuynAz/fozy1QqRUwneCvp6gwkxbDr61BIL30+iCAaeaZaTWAm3W6JLX2dqbfpcuGZEM2fF9cxRSBEndrxac05ZYF9bTZh0JimJp0ahVngA+UgM9sTUkloLO1ZzQAPxH33FhlwthcReVecHGQK4b2DXI2+KLgSgRV+tmNpuYeFtueSm9U7UO2sY2sC6SDfpcuS+SAgJ+zfMpDqbQ61IhpOVqgLL5m1omwrrielWJtzUBho5j6Ngpbhg8BdDLJJwA/glcb8G2CxjbOFgAdUFrAnzHnUOP2lVqkNCUV5pVVULimuRY+SKtWZaSDfpcuc7Lmy7WkUAU8a5GopLZmWgv4nvSVZh27ICvkJY9WEUTV5j8J+J45e3wyQK3xFixzM1MoL3kWsYZZlZGUQq55MkWVA36N3ecdO3VfCzDPsjpWH9PPmnLm6poA/MblT0s9UQf9LkdSiAhEhHEsvyzkEy4obCWW7yANgmpTZtl68SsAPowJyAF+ZsVpDABMwRXATwi0CPA1PraeYBQNVbG6DMzpdrPR1cO8CCecRVYmfUuzzhTYL0Hoyh2eyjJZ3PyT89w+jN6ly/OU7e3zuHTp69OJNgj49iyARjJ7TAF+HhZMM5QBjwf8ULoBfGoBPmU4ytPYuRbgA8TxWnPzUg3wjTVIP1pea4SzyYjyqDTaWpe0TpSi6UQZhV+RlM31E8VfraCKgirKsoWlIitDurmSshSx3Maz2Zl+lyMnW1vHcPXq3+DEiZN48mQXf/rTH8pEBwD8OqbMM7B6FQnebRlcTRHPzfuugG9zCfoZcHX5iqaS5rEfJBepAr7gup6LOUsjFPCJqegStz++89ix5qkczbPrzEYL1V7PTVQZsy8sL80J2hl7kEvWGLtlOjifP26N+FyKBY9WZ/pdjpxcuvQ1nD79Oo4dO4633vobEGWvwZLReGNETpVovyUCF3nqQgrn6f88jwk1WJpszXZXSw9K+TfHrfnFkmu7yCoBegbCqwK+MGkuAZ+lTdqZpi5Na0YObiTAUOBbgsEuTcNEI1VJdHHfc1bfqIzlWuoPDvlumMFu20FII4aFXKKDfpcjJSdPnsaFC1dBEYjefPMc3tzeSQmWMPyG1Ab1LYY/AQ/IVUOOXznv1zozwE8F5OaWGKxWFmvySYWyIl0EfDMiEKQSsLKAH6w2yeTCRMgBn2qAn2GZfm/X2XnE9FLpthqmUuXE3aiIuFnmHODZ9UdRSF5R1q5Kw8y15i63dck7R5rQytluUwf9LkdKLl/+Bk6cOKXnwzDg6pVvYdjaOrBJp8CsDPCX6ZPcHJNKtIDvmkM2DvDA4EcDujGZBfz8mgTgtAgP+ML+E/5lSiMDfG8jiUrDTAw7TFf8ZcPsY15jErL9lXVJCnbdL9opj6+z77rdntEopN6Ghs2ezA0JgM/VJqez7MmpjhpqT2BdOuh3OTLyxhtnce7cpSL8tdffwIULV6czz5h0yqQHBXwpPR1ZwNdzM8LXlIYp1wBfzS8W8A2RVsAXoBTAl/8jOwW4YPhJT0V2nwO+lBs7zikqvShGYdBudaAxa5DYSQqwNxc3WZb8yNzY1vCByig7QjGfsCQ9CGdpMt4XUBlrpL+qCGeHM7PSQb/LkZBhGHD58jewtVX6LhAIly5+DSeOnywzLgR7zwHJhS4F/KkYrgAEMixrAb77oIniuAAruXIc4MMwfC0otUCsL471EydzjjY57IOpDL/Ay1iXZfg2ytTpOsABLvlPG9rRhAS0iLBRDBSvoS6ZprJlOVC2VxVHO0lNan+UfZA1cBboW6w+H5F46aDf5UjIztmLePPNnXokBVv/5cvfAOUvUfZetcA+xfsS5gFf2F/rFUU9xpN2fyKATxbwE9gqgANgmQhYAPju2yMMgMhdL4MV4BSwiM2IgqJSyOkxm0IlOGPsDsyzi7Z77Gu8CcvnAPL8SNdZ34qBUCgiW5Zep01AOgcgz4x1oy3BPhP2qXzlU0OVPG0pHfS7vPJy/PgJXHnrW3UvHYM5Fy5cweuvv+HTGMyQpPaX+JbYZ0tW3hLGHNgD5KDCtFvao6xTANsAPpAA0J5rnsi+HWM1hVMd8BEBX5RC+J9DmNrOOSSx7J64/FShZfgk5RZUvE5c84lVBXu5hgzs8+xMiUVnuG46IR1mQxSSh0OrD22vXUJpt58A+0l7fUvY/J1O20G/yysvFy++hVMnT/tAi+DxfNg6hstXvomBttycYT5Yzl/BFC9D9+y1q77brWG5TbE+4Etx4Tz74HkMS7Q/tocpmp05KYQJwJdFVy3AV3IuYJ8DvnaqNhS1Xq12Qu6dVGP3LYnmHN0CYgrs2VyXMoB4b0RfxNXdwuql9V6tkwkpNEIF7JcCfUk/5qSDfpdXWk6deg0XL76F4mXI360Ytv3meby5vZPMvOSTFSN7ja28ctlIoqzQN0hgQU0NeZIM50IY+QBzmjN+yuITcU2Az5OATxXAN5XEMAH8UITRNNaDxow2moCv6UwjLLvXOk0aW18xYJCbyqiPAnKwl/I4fI2LU5uYhdWnu6bVZPeQXfnwfcB5h9QanktNOZTSKqWDfpdXVogIV69+C8eOnWgkiH8NWaKBcPXq3+DY1nFl+x7oybC1ZNOuelrn77IpibJEOchPAX6KlK0LIvRWAD8EkDsXhpsA2zB8NAAfFNCiBvimTW7DzhrgW5Cq7JtvtIUJF0aeaz2T3w7NCmWbwJ6Q3dBcnRfKKIA9x4sj8rM2Oc/2dntTdoHtxcOR9UNLligHGSXWRzsd9Lu8snLmzFmcPXuhjMgwJt/v5LXTZ3D+3GUN9O+rhf0aS6tJqiAvS2RyMFAAviicAEgWDx3x5VIBsLWdK+AHwGQD+KIAtDDFaTZekgbMMmxzwOsAHwagCapJpLGuI0TrZqCcLTZzppycXlft9hnQ267WSzeFmI/CiHORn2cWJWg7ogb0Nr27gGpbfPpcveQEIqWRuaXO9LscKdna2sJbb/0NhmHLR1iwj2+GJV+Ch5evfAMnTp0qBtEUzxzjFwSQwwqw+Hd/QlHkbyqlP+KFY0cWFkvdrgeCnwadxKRDuoxWAD+URGLrpnLaUQqQ/fNh/tTRxTD2HPBzTVvbQsCZfVL9LqFTjLHjFeyBZMqBKcs3VkNYmhy8i0K3JfAmKc6AvZ2wV1Y/yQHawD2dvt52Cc3vlpy1nIU76Hd5JeX8+Ss4c+bNFGDeCCGPxcp+894eP34Sb135FgYaDMwmfh8wJth69fUSJmgwscSAdGZfY8vWAXjTtAKSVSEeSx02KPhnWxUTG8CHAj4zwGMsebBgmwGuA3yjjSS11Z4Sale06uiBUlnZnkDpgs15ld3LsQF72/GgTHFUAFPvF0Pt9hHomUmVJpHPy4bVW8VQB/saS5+SJaxejlOl9hmdkw76XV45OXHiFC5d+hqUlgkQZsBeA/vw/odX6OzZC3j9zJvR+4QTyGcY5tfk2PFADuwVzx45NiRVXecNY/ejBINrSGnUNAE4DRJMEgHwpa16zRaH3aY8FvAljQXzLAmjnANwGskCGbKLEgrNvg5No1qsriVVgcB3YgtkbbkkE88U9/hH8sYBBXOWcunsc5O5zioqyIC7iceV/kGxYkRZvaEe5omaGGBk0kG/yyslRIRLl97CyZOvOcwRjLD45U3FpGAvGYZjx3D16rewRVshzrjvpQ24/K/+XstLmocmcLckObk32gszMGDIs+BEcpE07dGgBPgWh/y51TRZI0U7Ok1j02ToXwV8wHS2ObfsPgP8fMRgbqR+C0Auwl27qatQXgk0hSOz6TPiqBhju9MqX04gX1/BZaRSt7vueiBl+Wyv5a6fEtIuujn06Pvpd3l1hIjw2mtncOHCW85PPAEge8sBAcyUFl8RF6/gG2fOYmfnIj7f/RXsVB2QvdLs/jRlMV6wKT8yUbL5MxyV6+T4VxiqhFvMcJtKUrxutnUYcNbhDJX1sVdysko32dZzoNJEKSwDe4r5BJBTZ4d8dmTjwT7vxHSRvkxoH2lac9P8amG5qXM3zaR19S9P7x7XSlo26XLAb5dblw76XV5eoUBXxeY6DENwtzx2LGKNgyQ/4pcJOka05SIBjf7PwEC48tY38bs/7OHpV3+NCiIhvHrXN95xW7I2G9kLPvWeOsDnhMNZnaSMFcGlMnrpWKLqdivQkY5ZZIQG4JsRhtZnKmeMKIcf9gKQwD53lbJwFm0ldodPO5xxgM/1diVhuP2HNJ20J8tktqOYgt+ijvw6F6a32ynXSIR3iCV/HZPtmJcO+l1eOnETa+b4jTd2sP3mOXjmZ16twQQJ2A8hzq9t8uBz+uTruHT+Lfznf/4b4nghxuct4+L9a0GB4o+pt3x1EwtV3u6YLSsoANETJ5owJAnB4yPMOTugy7ZBLnZoY8hkoW1TGi6YPI5Sw6TxsBZKj33pfEtjbxjA92Bv+6AiBrjdiCEhf9GO6oRyUyaUQnEj6+VmtySee6VQK6Fe7mrSQb/LSyW5J4XIsWPH8bW3roEGO00VGSI5HAgv1yzYk2P1Fy99DXtPfoM//unLWLRlYnLUAJTJUUA8NmCRfMmRlJOEUGL9g1EAnFAxA3jSzTG1D7z1AwLIQQdwgUZkhkj6QfMC8M1F5aBXsPusDzhLY00sTDZhqq8mGUt3+Fto6EIzoV3wTDpKA4V6G6iWy5RaflvNtp1MumlZMtroE7ldXmSJAC/eFC3AJyKcP38Zp187400QcfMrAIqFlP5ze3zpQXTRHATw474xW8eP4/Llb2KLBgxMGOI/ogGgIdU7VH7kfw4XLR7GY1nzOYAxkF/7KwupxGffbguTiwB+OEYybwHRBBSvtwr4ZExfceozLtpSN1WidH3SBjfpEME8rXgyF2pP9cI1nTryaLYJwI+jm9DKtEq67ivFAEZTcHZz7H2x1+FuUtYM6TskrxogwXdd5aX0Ka4E/BBeaFLTlto1Tktn+l1eSFGAbwC9TXPixMmwLbK8Lc54bYoJFDlGJddLO7CWST8F5+jRMQA4v3MRe5//Er///V6F9yXALF5Prh5CAMGH+JRuPCH2dxvG6TJlIloXceVIQ96SrH0cQSuMiFL/SN3q1URjap2134u7kYIzp3ugaVKbjV6BzEPolVpbVFS86l2TC7s7B3tWTew7o57GKkVk/V/cnXTvLViTi/E1ld9FS+l82VOsfgnA5zUn6aDf5YWQ4FLITTZv0+XnV658EydOnIRnggnt3RYFERWV8bN9PSLYB4QDAOhaJTBoa8DVt/4GXz76Pfb39309nANOHekHKbvxTrP73zJP9kOEDNDFBJRMPgEsQzYPrLYA1m0cSLLp17DSCACiScwIJfaa+QCJm/jNyHVtKlLmTGQ7CWWsbFJqGttDVsHo3YGXEkbtdeenqpsysC9bbbOxuR3lCMDDrlcMZdkHBfnleTrod3l+knnfTAF+K+7MmW2cP3clvEIW3C3TjWEEAEN43RQzEEBHWK5CjwF7UQLMwJnXz+L8+av4za9/AefASTns+Fe6eMGzy8l5qICCmFwUs0VpOFqZaQIBfLnOKuALsMt/MUhHQFEhEjuLDcXyE+DLuQHtfASg9Zk2yKijCfZ5FyXlms6k7LwXy/OcUcs8T2hqCd6tcUG+oVquFDyr9znyD6BPg/06QB+zFTvueemg3+U5SACB8FyuDvTWRfPKlW9i69gxWMRI+ViDdb2S7KMem6FcM6LAAHa2b7W6sgAk4/Llr+GLJ7/BV1/9xbxWBiz0PY7AZzDVxGSSw5hXFh6tZD7CbgcQYTV62RCHa6IIyG6uVIc8Q7xu1p0z03wHGwyP1w8py4DtwOk6tcHhXNpQA/y0qMqDbA3sRYl7aTH7kpMnIGe/iNdBeKYUXEnswqUn8ppLkM/Ls9y/BvYT78JELscIGOadqiuUDvpdno04Vu8HvvXkZXwetrMjn0BM5cnHsZKJArBvujpcZkxIPHUIAA/5SACgIZ2cOnUaV698A//+749dXVJOyloHfFV4jvA3GCvDA5Nh45yDJgEDD1p3YtIZ4McJXICST38EfNlQrTYCAAHMQ2L7dq8auQQGgAFpa2aZNDXXx2PMk0YBpArH6szWc+IdGvMthBOjtnAv3ef7tvUctrYl5uody9YDFKXmlvxcKs96ltrmovjw6GI427+OsXSm3+U5STkpOw/orXA5P3bsOC5f/gYGkk3eAcf2QQp0druB5NshQZbZp11NBPjIlmvaff7cZex+/iv88Y9/MJWI+P3x4wDBC5cvdjj2QJczUQsDatIy7U//G7Cl+P7rBjmmrMwUELCeVL8I4DOQJnQHgcTBD23CUCPWadm9BfPUBrc1NRlgdKt2c6MImZJKVp/qyXi3Tk7k/ZnLPCh7heNj85FAzv5TunJkUWsFpQxaW+hy+8yXLagWGqWDfpdDkyWTsrXJ2zmWT0S4cOEqXnstfM/Wv1gE9ylcYbqDsb9GoNJkQ4LJUELaoz4kHVI9HMYKx46dxJUrf4PP/vX/CszVwnz0ZXf+0DIRat5mbz6Q1g0a70cCMR3LaMYA7hDVDCONAAzgpwHHoHvB6+hEFJsA7aDjnZiG44RuAHKubVGaX5Dx8kn9ErduLlfISc9q/ybAt+XbvsqVALJzq3AsEfBM3ZZZL622L30+qrChCcpbzF8X9lXzWx3OpksrZImKg8XSQb/LhiS+Uit64eRgXkuTn5869RouX/56tsBzMHZ7s3qVCEO2OksnKgEwJWY/MKIPunXhjJUoSIp5A9jZuYAvvjiPL774bbx8i9QZI1UTiPJdabj2nqvHBUo4gYZwLams2I+BiitIMQY4W1NkhhQzk3SEY9oRbAXsAQSQZnVjIlE2luELOpG9qhRGDsjTjpX2Bkoaa/LJJd+BBlkqD6d1xTAF4LUUlKUrW2a5famOcrCnLKtbHEi2d1YH80JzNKSDfpeNCCnQtZn6IlavvuT1ssL+Ot+KLppQYPfG9LggxlHtCIimPMHoQZm9WSrDmVkhjgZg/2wR3nrrm/jyyy+w//SrYvGowrlYNMy5WN5Z9tWRWIbZ4ji1XPdLj4UrIxRbu7QrA3fpDzFvsPSOAAzLmETmAEajTESJxXPdN74CqHazOtadgCAjI8f4TT/EREHp5Au7rBhFbaM8B26qUiM+Juf4PrxEzjFLbfP7hVa+fuc2HGPYXH+4rQTMkKXKpSwPj9JBv8vasqr5JqWPANNk+VQdARARzpzZxs7ORehrZ60FEczkTwC0+AYMgzMsCPgMAIgGA1hSp/X0EPdPMziP6V577Q2cO3cZv/n1L2JiAwNmIm3IXkRWu7ZccWyV0V+hJg7sGmbYb9lhrDJBFsPZkKSUyPbJZEqLuJJ9PTR5yAqWc/kvKeViX9IsDdOgIweo8hIl5UcKCUKzC7TQXt3AvlRClMW2VlHU3SjTUd6TFK/CqkXpBTsOIb3GokKTQwJKQtHE7fxSKwlLhealg36XlWQO6PN0bfNNua1C61z+bm0dw9e+dg1bW/LYmglTSl4llkXJxzBUZDFS/Kc4JeUp2SLzEiZvG601piEGrlz+Fn73ZA9//euftBzEtjgKD//uW68fwUqpOgUmVTWI2WqAe6MTcHlAtrtWyghALsRD4+hAUMuJneFa6TxqQprclya1gYwraKovtZVSlOs3GAkjDNt7pPVk6Wqn7CfV87QtkJdUOcjbq7B9ZkFeWDvJ/coJfLr0inLKwrlsU6ojvxp/Ta03lZirqnPxy93laMhBJmWnzDpz4fbvuXOX8a1v/T98HgV3cy7B+ZgaCkWaxn1KQ0Ex5bNsWhWBBdyY4De/+QV+8e+PdfJTzDBqo9U2sHmRpbEl+DtxmsJGGxAVN84M9wU0k9aSAhKQBh/+lIbzydTo1sk15HIKJhmiUvPsJLW95gYN1naStjOlqTlSepacSuSyHxswmLdwKm0tmQdpew2ppPq4ARpKeUAlvEjnk9d6GcwjculMv0tTDsLqa+Et1t8y5di/x4+fwNWr38QwGFMDUfKfFzyjED4AClZhVCEvRXgFhdsOStoFvITbhbR6ZPAt90AlABcvXMXe3q/xxy9/bxibMF34CWaKkKsG3qQYSqYP82GPALyiuHQtQmTczHFcoN48ZMpPyibnvoOuS7BMPmtErDfFD6m7DLvXcYnZmjmZqyKtr3j+FExcAb/0w9c0lcdTwD5dIeW5FIA9c4dXWICrVdNU6iRjk6NiRGeXz9X3BpIuzEE9r8r2mk8nH1GMsXn3Fu3tTL9LJquC/dR53abv0y/5+9Zbf4MrV74pOSM4KorpBmDqd88ZWIVsCiGJ1AvYww2XFTDiG+kAIsMbYfdPnnyOTz/9/2Acx1S/ZfH2VeM8f+3cTo7aTGlC10vuP59C6mATLfm1sqrol3ouYbIxp9lWEGWgxcir0V7NHzdunqTEZGPmWX0N7BMYN/Gx3j6knqhLpsymqPjCckvWn6hFPvp0+Srw3pl+lyh+r5pmqkaiKUBfldXneV977Q1cvPi1uBALSJ46g6I36XbDgBrmDTjbDQsGc61qDoHgf9p/Xnyl02ZaOTiHkiXf9vb5sGhr91dacHrn4vYFamfXApJZBma7hHh9AklsGDIDGNRbJobJiEbOBZAjOA6SMfaCG8sMEUAMssjEr+vvLF/qjrDdg4DqYBRpMm8ZZIr95XauKbApH3FoVRmG+nbYI3bH5d5IOXNmH+1KzJs3wCs6565qhgNElYHNhNTZfD56iO01pGeBPlHpoH/EZQmrXxXop+JW+UtEcX+db+D48RM6dJbFUuHpjxOzsuw/2mFIXRTT5mMK9krC0yIsa6ux63ILvmgYNMkkprBaAq6+9S384csv8PSrr0IasYfHMgX83AJRlhNrQpFaYMhcbBNDr0kwL/SXgHVs/wDYDfd5SH0n3kiqjORiFZcJbE1nGdjbkZBcm3crtWwU6d7FNHKdHq8diqImdqwRLsu7vFpRhamX1niOTbl5Eqt6LGsPXVICvTxKkjZ5VjXHLJW2ly2ttbxY5T2R1koH/SMqhwL22ZB+XaC3x9vb57GzcxGDASwH9gJ8g7XbC5sFwudOktNjgtNgy06kVPZ/QXJlhAVmuah0ndpW/Y/x2muv49Klt/DL//x5evEhPvB2uB2VAQPJ5m7apwyOEwkXwCFETx5OlceyBz0ViskRvI0Hj61br9PAm0mT01TBf+0dTj1txwOeySOVrYlY76GvwrJ7z3BT2VCwt6X7tKk1eh9bdJh8FHyUA3unnOxIx2biennT4J9v6uabOtH0Ijw3rOXSQf8IybNg9auabwCAhsGDaAT8Y8eO4cqVb+DY1pYUiPBGMYjTyiseCIOlznGRyxABXEBNJ+oGWWuVXh9ZntR8/R3Y2wh2h0SESxffwpMvfou//PmPfs+buOWxTIbaBVsyPyrzAyFY2Gxk5LHNYVQjgMxJkcSGcQRimUxN6wVGZemMuF2FTgYPsR1swoTJ224wNBZ24RWgn1VkvyIitlqvqXBfzcA+h3oZFWhfIZOkf0zfUZGkFVAlzCaQYiOt4p3i0yVI+xoyj1stjZD3dVlWu+ZyDqWZsk/kvtqyDOiB2gPSWllbi1ub1eesOYYTDbh48Sq+8fV3DBMTBlkyN+JopiDhmNafIYJTqM6wxZgXWWHFRYf/fF47ZrBlhXI+//yX+D8//9/gcR9p5WsCVGb2QKXMG1q+ezFlMBD/CfBaoHOTqSwsPOgGNblIPxumr03IKGqa4JVRg6mr6CRRQt6nXtRHOs/AKLahZOh5iORJ45Ki/inKbi9lKt6d1l057RXUy2rWsFhq4F9KrRW+xfvdZfPoyDNl9casMwfyebi4YJKAfzw/efI0rl79Vogn40wnpJkQ7eVS8YBhkFdSACa+oBR5rNUW7JVdjcCZy0uLjCBEXVRFADozJQAAuHD+Cn735HP8/ve7EYBHBX22wJ+od4JFQ/YT7kbVZS45uIQCsniJZFQRL07APi0ui4gncwxpxjjtAGCUC5Fh7QS3PQTpiEWU7ZCtspV00EJ1HsKIfMfA3jfP3NM0uumRjO8bZdPAWw3m3DGzmdLVaL18bG7Tg+48L21aSZSwbYG+1aK89Fwdt66yg/4rJC/6pGz7XDZL85O3p06eis+22URnkIlbACD9MHe2KTJk64QtmIdf35GcEaYtFyQ6lg61xQtlVsZPRdpUADBsDbj61rfwp0//gHH/KTjMohrzSVIAQRmMMY4U4HMbv+50qYEyeW2YPwHAECapFQXTJmnyJSxybp1wOyGzUbJuHyA7MjB1qeUmttlvtZA61a4tkBwyZ6HKTjqQzD3WBqS/NYhtM2ILhK0NGVq5/NxOCd7hqGayqaXP2yjwbdP5cmoxFuRDiVRJ37qyDvqvgKwL9nNha9nnJyZla+fpl8D/tdfewIULV9JCLAgQARB2SxQUgLJLgmydRlEXpAVa8bUIhDSVGQHHODomEFdGTApYYj0gQN+tHOylZAB4882zOHfuAnY//1UIFeotYB93oAxAOERA5+hVFNrGzMDIAEbdIC71yWiAO6ooY5MHpU3MmDj0V/ymLZvySS+MVbmwBZOoU2ig2GsGqjhuHqcLz2IjKbUpdUkORJzCuMK/09Asy1n32PEsvAadsowphtg1FJWybGke1Euzj627Bf4loJds3LbT1lWrMfWCTdFWYiId9F9SeREnZcOxAHgd8AXIW3+3to7ha29dw/HjJ5SCOrAHDLuHBkiqGJXAKp6oPZ4SgAxIQJPw2s8ZqFumVQgAzIyeEc/nCIS3rn4TX/5hD1999Veo3V6UECMBsIkDCBjHtPh1S8BbFJgpx3r+RN0BiG4Ztc0cwV4YOsVr5cGUK8ArfaTYblbsSqDRQAL2nLNRtvmgeXMA1+RFT+Yw6SGd4KP9bEIuBvC5VD8WsNMdL0uw5VN2XCvL5W9GyPOQgDsfkZRvsl1nMA/0LmefyH25ZO6+rAP0+fnmzTc1Zl//nT17AX/zrf+nsn/AvITpa+XJlq229cCa7XsVWL+wee8SZxWDiiK97Qfx5bc8Lx0XzJLNyx3ll7/8OX75y38DqwlnhNjVA4sXELfHCXhl/xTmLJ0As4IYR7AXbQdBf+uun8A/dZRjsUhXHes34GsmdO0EcSpM/PRVs7j+ciYcX1x2K8wZ5yYZmy7978Jt9iqE10Lq704LVGvgXysychefV7VxK6Ovh7KQXCFIl+eZvhrLCjrTfwnkRWL1LoyS500L4IFpdk9AcNkkwvHjJ/DW1W/h2PFjCsjB9GDZKYKJIpqkBwV7UkYao+EngCniEBlbN0qE1lFBSJMwyR6VXJCyvdBtf1658g384Q97+NMffx8Z+ZAmdwdOwKz2fQ5AbzxsEpBHvjpGQCaZJ4B6LwUbf2YgGAFZKSQrORNQSP5Yl3SPeH4YFs6UlIW4gtr1AskVNCkit9komTrMbZCmiMcQaUgN9LxqguZDlj4RglzyNGXZ6agF6pZguI+12TTKBbKdOtmnbQ0CUhyrgiT3sR7fP5wH1MrrTP/FlMMCenu+LrufYvXOG6fyc4CfhV++9HVcfetbCqlABKiIOm5RZ3yNTLTGCStPk5OlB77j6mbvfNIvPeXpTNXFcRqVpHNpQ/j7xd5v8W//9v/FOO47bx4ezbHY4wWwDfiHU2H2kh6JqTszjwVuTvmBZCYCm/LSOCgoHUp9GhWPgr5qiqRSQjrzCRFVXmVf2y0KSgaduZFqaJ4q+98NCsgpj5rUHDHTLecs7TJxz9NE3rYCK1O28tcYfa1sZuCrCrx3pv+CyfOYlM3DDj4p2/7loC/np0+/jkuXv4atIS7EAoeRhIA9IX2yTz1EErsnXaELBTIQQOJcopObhplFVqw2e8mrH1UplYU7NkZ++6r7oXyIOXv2PL744jx+97vP4+TsEMw9Wwwo82cAo2f54vUzsrHY2A+SC3hTAntl+hyvlxLz5tGDtLiCahrrZQTIaC7UxtrBojzC4CH0ksIwIc1HwPBl8TaqMu+UgV1veoi2dnlNX3tl8m8SG75fsuqo9I1yE7VWw9dUpBmJiIIjoHGJjbrh+zcL5yyRG9mQNsE3UP40oKSD/gsgL5L5Rv7OAf5i8w0BwSunDfhbW8dw+dLXcOrk6djAAITy3VcaoMhPEZRBpO6EOnlrwB7qsw8tM2JYvBahyZTyGSUiw3X78pTMPrHdcl43po4FbYkL559/j/2nT4GtuDpWWH9k5WHCdcuERyjYYuPJYxj9yNHkwpD9hhDNLJo/Az5RDAzE7//JimDW9OrR46BxMJPNAr8R8I3Pp4K8y53KY82fEmhZZMDP/UlwXAw2tH22rSERiQKqZCmWhBnlbRxPTU4yV+YVhH1G8rKsMjG9UQV5Wy7IeA1lGshNCQR+BCJxCsjqz+vu5p3nJ5ti9UuAf1Pmm1UY/VyYnL/xxllc+5v/F4bI8hO7jjSfEO2YltlxJP9UvoQWgSOIJFJuIMl+6ogymyv8S+OZE2v96Q11+09m7QjmHgbjF7/4FL/9zX9EAB8hrJpHmdwdA1iPchwBXuMlyLB5AJpUFIKZwBM3UIVP5gj2nJSKuQ5Nw+GqWGeBa8CKpKzk+k2B6qUEaYNRlRUWnuYiSgDPdIEvy40UTLxDN1Ome2jIjRby8ikrpwaYVjVIgAV/tteWK4gM0PN6aqMDG5NPetttLv7SJ3KfvzxLVj8H/s/SfFOy+wDwx44fx5XLX8fx48cR+GUET2JEiu+GzsKqKWOjTGG74Xi1mt4qkAT0lF40Sq9Uqrv2Dlo/aFLUcLdEbATZyMBUgSuXvoEvf/cF/vrXP4NpiKacMbhO8giMFCZ6aUQw+0SPn2GI4B0URcR2iBYYo0lHw7cIOjnMAKJJiDl23hAmlCVDmkAW1p9cSeWq83pZg0iVZg72HBU3c3r2aqANmLZpb4e+FsD1ZpyMJXPNfOMX3aVc5Hc5zYqz4G05vuf7WRoh2PIMpkczPYeUt9qTCV9nctqUvhhMCANhvogoppR6k2ZsQU1n+s9AXnbzTRkezDY1Np8z+tqx/buzcxHf+Po7GCg+5BaIBdQIkLd0SJiaVovKpCkSNMu5Z+Pk3yyyzN8sdjGMPh2m14RMHW5oACnPmgayNhDjN7/5Bf7jPz4Dj2J+4WC20a0aUrhl/oq246jKQIE5xqXJYTPRCyjTVzCODDDNB0h3J+WRLjtNMrMrz6hCO9lsmLudmHVsWbGJK2FISgU2LDOIMOwdSuXZcsxdUVafQTenzFm+rP7ivExZhMijnGukrH1lufl12QYSZAQLJJw3gyrN/sfO9J+tvMjmG3u8LrNvmWtk18wayAdlEVj+yZOn8NbVb+H4sWOGSlHEXRY6DyCsJCWKsEzstgrQ/xPJyoDWcDNKf0nLTaWUPA+GNZFPpkV7cHcjApc8FHTxwlv4/e928ccvf2eYvtjzEZg+xmCCGbcADGrT53EEb8lkKwDJLyOCEeBhRJgQTkAdwIAi2DN4SP70MoJKSmJIrqCIgBVHGjEldCKYhaHb8HitMnEr+cjEUzIJaTlKjeEsb6k7s/119JZn8wPxXrmwYvhW8R3KKLyPT+kZgXyUaWxqX6hXgukpy/PLs2z7QkiEUY/ZHkz22ZP5FXJK1tXRmf5m5UVi9a2wdU03SwA/hQ9ha+Mq8BO2trZw+dLXcfny1+VKlKYI40/4GgewBLhvrwJmWJ/25NH3xTJ2O+zmmtOe6ffaWTYySLEe8P1ggV1hNs2TJ5/j5//2f4PHpxHM9xN4K6tPi7nGhNwh3tj4RzPByzDgj2gOkjkBSFhUBpbV66Fh8wLGSPH+XOqM16XzA6IsjDnCwIwqmxw4DZCZYnwaEz4dRtk5N8suy+J6uAmwtCCBb42dl+ecB5JvJ2y/yzPU6IvyOn26L/sum4cnc2C/DtDb88Mw3wCB5S4F9mVg3zbl2L+nT7+OixevYtja0n1ugr88Rfoc7K5EiORf/DsIg5uABdLXs9I5Q2z8aeGWwX0VHSIXUG/B3gC7pLdlsQnIhMwLa3n/ztlLePLFLn73u88B3o9M2rB2jOCR4jlh4DGYdUaAtwgYBowc1hTItvjMFOcEOLB9BsBbEci3kDZ14wTa0YQUbgFLZ0OBWiaIjQKNmB2VgF/rHIKEubMBr9h70Q4tZeQmGwVGu1bAhFtlrspHOzoH6aRFOP+f8rabvKkLyjLNe2iBX85t2jzcfWVAroPYERcL9Mr6TZi8F5xV4JVP6I4WInXQP4BsynyTh00BfB621HyTnx/IfLMQ2N1fAINM3h47jitXvoGTJ08BzKp45MVNbxOrMwIxmb1yYoLB7MuD+MpERi5gT6oq4N5SObQrKSk7SJ9nNPXq/jT2la7nlxfUVmLv/Ne+/i38+dM/4OnTr5DMNJGVj2OYzMWYbPhbwtz3weOo373V9Vvq9w+I77/6248MRprMTVs7iHcO60/t/KBQHkRJhB5z3wLg5FEE+cuG/VtGr9rC5CVK6cmUQ74cURwe1EnRzoGmZcnyf8J/DRMiIefpWO5xHl4eW6C1381tgb9eBZkxouwvxW6DaZffKhtz2a5R8oznZqpcOuivKC+S+Ub+Ph/zzYqgb/6eObONnbPnsaV+/Mn+ml62+MSOYTSSPHPCq5ozGY6jBIV4FsD3ImASFmdlSoQsrKQFS8q69AWjjP3b+wX3spHTNhIYzl9//Q2cP38Zv/3tf4BHSoyeENi8ePJsBYUQmP4A8BYwjHEieAzHzAAPAdxZFniFC+aISDo5HJUCrFKI4Jzs9rJALIIyx3sieSAAb0BVEWvwaQT4tYzYNLF3W6VggV/7S8ISTLPJaBWEMmAD8rlCsWX7hWDpgIt0dfDP0+TfDGObwygv2PkN89RV8bp2PUifQHbphzDfwCYulw76C2VTrH4J8G/OfDMN/Ouab6aBfyuA9NYWCMk1U/6eOHECb135Jk6eOGkRHkivbHh5OLDkYWAFSd17BAHYHbPnsGumS6Qdm0rWzyIqGJv9eewx5+mkXDbFmnvnquMsbaYJzMD96pVv4E9/fBI+rchIzHsUFjyCRgotH4LZJoA9AUMEbjsyoOiKyd7zRxg4wHHkwLEFZEYEUdWOMska+lhBlWX753gu/a96QzyOOCkB8n+LeQIY8FPwl7uVpzV/4RUI5PKQlaURyRffKZVcwcCWb8Iyve3Tp+eDbWycyLbupxJrP6ReK9OFZY9RrojCSACpz2EGohXpoD8hz5LVz4H/szbfbILRt1w039zegT7u1pYPBLBlgChMvnIYCoTra90D9cCxLw67DOT+JrBy0G0Weunb5CuCz9GYujOFlBxO5hbCNW9tHcOVK9/Cv//iMXh/H+D9APxDAMPA1MX0g7B9wxbiKCAoAAxDUApj7slDEajFTBSBd9hSoKdxNFcR2X5cCKHgzlBAV6Ama7bhBLgyMlD2bYHbKITYXSVAe7DPJ4AFVDXYgGDaphoe4CkbURgdXFUEWZhNp9fv73hsU6yHSNsgK2oL1wG5PsNROGtTljy8Klm9+nTlyqumQaJ00M/kWQK9PV6F1a8L8qsA/KbBHgBOnXoNly5+DQOlRUEUXHwCOHL8YHl0xmdjxa+ModRtTt4GN/gnMlDmeZh909SE4xNm1N3668sAhVG+ghJEuc7RtH7db8h7ducivvjdLv745RcIWzAET54xAjhFkw1F8AdTnMQdAsgL2A9DAL4xhGPLg39QJFJepIWyQAxituGwuSZTAnk11ZACq1MImsb68cOBvQKx+yvhUVHECRwdGWS9m243JdZrwZgq6Y1ysoPKYgUul/XoyCedVlfuskVuuXay5aQ/GpaV454Kq8g0KKTwFIKTgomB1MhvpYN+lHXBfgro8/MlAJ//nQL5WtgUk59i9+uD/YBhKAE+N+tsbW3h/LmLOH3qdCRe5IGUIlsfAitiJvNBFDvlhuSWGSd6EYcH1orvPXWyV8Ayei1UysmD0+voyzJoY++51EtI4RpmX1zWUoatLVy+8g3827/9EeP4FBRX4g4K5vsK5gLQW+N+NNNQ8qEfxT8/ho9xMncQhRFRi8W109rtKZp1OK7WTfZ8AMkENKZw+fCH263Tgb5dTcsGRGXClbwiMBza+e5nLFb/KsiK0jdlmnTlccV90yqZfBQQw/zt9GBr8yGrP78G9zSK8pNrzkYRUhfFODlP4VldtgkNSDvSoP8isfrDYPZLzDcHZfYtVi82fQl/7fQZXLxwFceOha/WkrASedSpBfbSdznYWzbvQVzMQ/6NyEcMJj7bviEE+bBkpzdvtH2zTPJUUwwc3GvuTUgAwIw33zyHnZ1L2Nv7dQB8Rpx8pbh3frTZMwVmv0V+gpdHYGvQCWHwqOBNHM086sM/Qvf0l5XA0cymk7XyiUaGAXrohLACej4iECC0526kEMqSNKoIjIJQRUKU/U0ADPsX5tyAv4CkB/ikcvOJXW03fHgO2FKyjFD06SCfTi10hqVblS951DQzsKs/Pb7GYVmGUIRyhCFlz+DakQT9ObBfB+jt+arsflMgPwfwmwD5pX+ByPKZcez4CVy5/HWcPHkq9Y0YKA2IBpxOi7PCS5Ls4jSwEEoEB07ohzwUv+N/ll3p7XAbsbEHe6MDANZyXeE16sSk7dXKdDaNy/RFSYlCXrnyTfzpT1/iq6/+DOYt8DiCeB+gAO6k++jHhVwjAbpPT5zQ3Qp79qgf5yg+/xzSC1jF7+ty3NE0+e+nzzQG335W5ZHMOfZcAB0R4C0ok4Z5ZSCX7r2DpBynNGCVh8QZl1CWe01+xS/GVA6lMuPgRAE3B3U1G6VgzWPuWPwrz6kHa20apfusbD57JCSdfTByRRXKtoCeOsnl1evwI5lcjgzor8vq58JWBfj87xTI18KmmPxhgP1cmlaYPX/zjW1sb++AhggiFJi+mAcQvBQxDGN85yyEp62nwgcy4khAcLZxWzWO4oiBykiHyWTYfL00H2LpmEZnBcKHu8G4yS8jnlOnXsfO+cv4za9/AcJ+YO5sJ2j34yKtaOYhMdHsh37cGpInD8vogIK5iEQhyEZukVlr2QLiSWEE7x94Gz+sHZ/0PFcKClQK7HJOmia5bOZmIQv4MHnh07l4+5f9eZ6+FSfhyhw4UpB0X22eHOTzJ0DBu6owzAEtTGvbkisseQ653hYrrzTorwv0tfA5oLfHS9i8PV6H2S8F/KVgvy6rr+2zA8SFWMw4ceIkLl/+OraOHQ/oIR8oYeh2CDRwUgKIvvtIFk5hTOLGGRY8lY+0ndQLXSqJyQNuGkbUdQZlJxk9SxvD1V4rkzkHdvumUwrX/hiASxffwu//8AR/+csfEdj9fjQjDGHiFvsxHBFAQxzG/aAAwkw4hOUTDNDLRmxjmhQOu3sK27YKgyIYRy8qjl8UU2AXRZEBnUzOSvtceAItpmQWCl1syjJd7v39s3ILsBfvHdK0bBpYAH7868IplZObbzg1Vhm3tQK6suwj0BwpZO2xYZV06slklUTGI7h41kp5JUF/DuzXAXp7viq7nwP8VX+r2OpbcWuD/AyzB9K3b4djx3D27Hm8dvr12FlbADiCPYcVtUSqCBxpDl9BCXDN8UMp4koYCoP9wwjfyw1h9k1My2GJ83yqHerCMROlN0tT60jFPiDQczsKESY/ZSaSKo4dP4WLF7+Of//Fp0DcXpkQJ2gRWH5AMwH/CPZbA4j3gwmIRww8xlECdDsHRDMQDYSwPQNFTx4CxuANxEO4P+ItpGYf3bkzm/xVU09u2zfhyOMBGfFpmAJsildgTlib/ipAi3so9C/SH71j6ZzTeV6m/pW6jaOAgKrRGGwKzgG8iCNRQknqQG/YPGdhlt1b4JdHyvRLze1T5JUB/XVZ/VzYqgCf/50C+Vb4qmx+HfA+LLC3f0+cOInzO5chu2qCg/kGA0G2ZxZMEZAM71jymUnhgV2Vk1TmM4k5mEbaQ/ImSPTso2KVR5bYPg/FvASna1A9wUW+XDQmgsL22QvYe/I5vvzDk5gvAD3xCNC+TuiGrZi3AtiP+7EnxsDMxzGaiAiIn2Qk+6GWcQwTvINx/eQxsvkR4C3dxyeBPSB7/MuNS9s4W8CneJzorzP7CGhmcfqXkMqP98ExfVX8KUyVBtk11QLNZiFf9O5xDN0APpv7VnUHNYBbhANFHk0XH4x0buo3+UN07D/ZQ0r6ynAMOZfrdGXmiiiTlxr01wX6Wvgc0Nvjddh8fr4JNv8swH6qHS3AZ2ZsHTuGC+ev4PTp1yBchbAVQExZD4EobomgbBDAwBjY7ItCULAnB8KchchbIf1tHnsCnDmmeCNqvIuyw6ERnYCdTFi4lvlnVF9YCm3eomO4fPmb+Nc//9/Yf/pVNCcF0xiYorIJ7J94BLAV3DIRWT/vg4YRhMGYcvYjmI4B5OWjLfqpxgE6ATzGrZ05gT50TYAFdzb5YYCew7bQRhkkUAe8goAJR3oGYI4lryoKswhLRwfx3LBy/1eAFPLYFCYXt0EckR47BWNGCj48B2RqpnPhmbKQ6xTmwAbwtQwibWsQSgrGtqEhLyXoz4H9OkBvz1dl90uZ/SYB/yB/V7H3T406Wj8AeP21Mzi3cxFbw6APsDKTMTzO4WPmdjcyDiaaCJbpQSb17FGCxpEBRwnvCiV7O8ybUnscsiWMmoTIZUgvZkQLqhenEQJCIPP1dfZvpACPqVwfOQ75Xj/zJnbOX8Lu7q8i2AbQJVldy8GxVb6FGzcUBSHa/scw8UtxawbwVlQQ+wr2Au5EYvePZhtCZP9swD3EUeHtY8GfUzmDzTcF8nJMKU3shwT4lP5CyjEuo8jKR7wP5jhf0JUDvmahFKDp3MiAkpnG3lqTJmf/hWmnMlLQtlDsi9gxooC8aSg0ynklmZgJvAfwEoH+uqx+LmwK4POwJYC/Crt/Vuabg5luxBTTBnjH8scRx46fwPlzl3Hs2DEE23xC+zgC1/zJppu2QAbSC6eLrGRCVt4wM4wGC1YzDHqDC2YfXiYZM+gfSufs33BTt8lTiFEStefUmpaclqmkjRPURITz56/gd79/gqdf/Rm0FV90YeMQN86o/BS4RzAGYGsMI6sxevcgAb3OD2zth/zixy8mJE5KwP6S6ceOAMRtM9wbOwKo5WeO8zmFQoH5i0w5kD83Bm2nABT8Y1mwacKJOTQjilCmP4dXEA2AN3fU/80AnW3+mMrONzjwptgeExZvTzg2z5M3SaW6rPLK5YUG/XWBvhY+B/T2eB02n59vgs0fFsgvtdPPsfmaItw6dgxnzryJN9/YAdEQuMq4H8GeIMQ/vpfBpXBgDHEa1i7cGeJTTvICAJAtEZTNDVxAZ3p3zNtglEENbN374Z4deePz1OmF9dJg9joKiCcVzx/WxEFOnnwd585fxa9+/e/QbRhknoEHBBYfFQCEIRLSPjtj3JSNEpBvGUAfj0UFsh/t/fsIJqzkCkpqy5dqokePAeR0zKE5oogysE+KI/cGkvL8egAtV/rTAH8CZqqESV8YcxCL0oRRCAz9Y5UE5Bos0MZ7wzyhIEx52WNgTTQsisudI40ATLmG9Key7GiAsrTpQWpO5r6QoD8H9usAvT1fCvTydxMgvwrAHxbIT4F++oUJVhsOJDZfPWcGRVv+8eMncP7clfh+jNHcEsBe2I2yExJAF8APBgvZWDMsIvKsKrwYMWDQ98a9LD4gZJJ2swmzAaWPvigKk09f3JS3Bd1JcZgUFM1R0URi8yT1ZnMwzm5fxN4Xu/jzX/4YywweTyyfG5SPmyMu5IqAG/bBFx/+MRYXKGAw3eybhVyxk+OHVmQhGPgY2DH/qAziKl7oxG/sLrksBXGKyocU4FU5WMAXNC/YP2vbFKQV+OOxALGuBYBJ44FfivAKQxBSnrPUxnSP00jCpZHy7LPASKw+B/7sKbHPlFU4ogBgymNTAMdnSJUdfF1WUdTkhQH9dVn9XNiqAJ//nQL5WtgUU26x6VXBfpOeOKv87PWmfmIgLrra2trCG69v49TJU/rMEhlklheUBN6sd0hIFuY9OU40Ij3tJCoDjonLFLEkliaZBiRwiDkA+xJZuE3nIFtujLFALsHkz9OEc7rm8t3LFVA2NwHpD8KxYydw4cJV/J9ffIYRY2xn2DdfXDnD2z+AsRWZf2Toai6LoE1jvAUBSUj33xk9UGMAy4Ivdc0cEsgPufnHliH3M4w2EBfcJSCODN4pAxighyk3UwLI08m1pL+SRNmxPAsK6vHeFsfxGWOzH5A8lEn3RM1WAXZ5zmw4TJ0W0G07yawtoGy0ISZKA+zOrGSVilEebI5r8lxBf12gr4XPAb09XsLm7fE6zH6VydhNgPxS082qYD/Xb+a9wPHjJ3H+/OU4CqDgD47w4orZhojiF4YiWCDk3wLHF0CAPKCDvcvpXpJ7+KGlDMqC6mLfGC6ZvJYjJiajPZRtJaXg3sbsMa2xOwlot87EUNql5Y03z+HMF3v43e/3wujJLUcekOwgwdWSgpNfUAq8H+J0AjhO5pK4eMqQS7YtEPAW80yMZ3ETtWFswu05G/u+lCNgH/KHrfnZlRlMOulYPZVkRGA8gsQcBOSKwoJ+5utfGw3ocXw+pSvtlg6ax04Ip/UBQkhSeSZfztLNI2Xnj5jN3RcFoc8afHn2AbJ1y2gm28Mnl2cO+ocF9PZ8VXa/CZDfBNgf/qTsPODX+iT/G1ZphqdvGAaM44itrWM4f+4yjp+Q/XU4fbwj2i8HMIQAhv3yzZeGBgu0abJVGBPFJ9+Muh2btn/0pYspWXPYQUf5jNnRgGWCAiamJXCjB3KF2KTppS5qg77EKbby3HO4ZxcvfQ1f/vlL7O9/FZkhqw1ZPicJsuDNYAzxXhhgHqJrJoI9n8hM8sYJ4uDNs6/nDtSR/PVlpa8Few/8YxlHI+ycQAJqG2bAN6ImMeknodgqH2sGQipLAJq0fOkTxDkGMnMGtj5zbyxQM+AXkFFKZ++l+WtNk/aZSI+TfzaMzjDKxJShj6eZkBbSIopITsikz+SZgf66YD8XtirA53+nQL4WNgWez8PzZgmbX3dSdq6fYRTAyZOn8caZbfA4hq2uBISET8rLqH75gz7Uo5Jm8zEVpJc9POB+QY7HWf9mWWblTEtIL0IOwok9cSsCMqZhd27qNXXazxCWpeZ1+I/ocp6ECCdPv44zb57H7t6vw4pmUSg0ho+giwoSG3+MD7UL+IvbZ1IEAbwiuJN4/8SVwKIIjGcQ5KMscYLX2uoV2KUzFJzNBnA8BNAVVM3MQulHlWN5JhIQO+rr2gED+HaiWPIlRWCBO8VRuqdGOegohEyYu6vlQip7O9VEZLrIpZFLIBPowN8Aur4XHiNrrpxWDhX01wX6WvgsAJnjFri3jqcAfgnoz9nqn9+kbBlWu85an9XvTXzSiMKiHxrA4z62jh3D+XOXQBRYfxDdDBYAY4wPK9GQXgDISyW8Pqy4ZfvEFtSeIbbXcGaebJuPSN8eB9Ls89gjRjYA0DptXZTCpaw0HAmBI5DPIfhuNG0qXC4quTiUd/78FXzx+9/h6Vd/Aem1Bvs+ENY9AHG/HRCCeWyMBaRJdWCII4MxXZ8oC+PLT/kIQI+F+ZOJF2AHEvsXULdpQ3hy2yTn3ZPyIFMGFoBlu2gBdwk3VNuANemIQJi/nKc8zDICSHXkTN8qA9cekybfTsK6TgbMNqNICZsAf0cCKIK8e94QTUOkn+kqRgaZbBz0Dwvo7fmq7P6gIL8U8J8lyG/CTr8M6K3I0yQugvsAEV47/QZOn3o9rNYkQlh0FR7ukREmZSmA+ijvs+gPJDI+AgpgWlsEUhpMEzioEdukdJhTeVOWpeI+BsqgLKszIxABXi2TbdXJdpyKs7CdMTFO+sGZdxovv5xtHTuJnbMX8J+/+nctVaabQ1sJoGDTD62NYAwgGsQhWzXLIitVEiTKQRS1fEdXVv3GydlMAbBZM5C8fuxELyJIw4B/zUvH/ig7ty6f6R6RdKamR6YEUn+ncMryp58qBQDW3OTBXZQY3D2vKgiUbQCSx5CG2cGKeWSSIvHPTpjwlQSUJpEF/MmkrcjGQH9dsF8K9PZ4HaC3x1PgPwWgmzDfPK9J2VpfLL1vInbJOxFhHBnHjx/HuXOXQcOWg9KRB/XBFwI58qjAHNzNZeI2hJPYJLVJZOpWaPVvhk/m0kti9+w7JCX/V14iU0hITsrSJL99uWzZOXFPbaijefFiZmCh7aeQ+OzZC9h7soc//ukPytIJEbPJgDYhKoDI8LVhW2GSNpp0KJWgIwHZUjmtiSDIWgAQBZZNwuztiCAoBjdCcHZ9a+axvzRJ7M080GMbrsdApSxZR2CO4z20Ckj3BYKkS0oBkJEEYn+yArtVBKq448hDn5nk6pMpDLkPNjxzvZRnguWeJ70E2DCZSE4PEMvTIs/QYTD9w2L1U0BfC1sK8rWwOSZ/ULDfBMuvtesgk7IAoXZbiIzfchTOH6oxDO/HcR9EhDff2MHJE6fALB/YtjZPjiN1VgCl6CoIQpjohX+gSfKHknQInuN8tq42Pejuf+iLVb4A5o1CAnf7irFNJ21Rfg3zwhnlY1/2GObT5mV7kNeFSFl7U3nHcP78W/jDvz+O94L1Xoa+ZW1ycPKR9RSJ/YeigjJgNQeJEiCE0cG+SRsaFJ6fFEZE8d5E+7/ME8jcgRkF2MlXglUEgNj5lTFzar9YpyCA3FAK0Px2MRgqaa0iSPXVRgcaFu/noICeAT7IlEWqZLQMSWvSpVGG8fSx5doHwzQ/PRD6qPnnR8L8a+xkZdB/lkBvj1dh9UsBfg7wNw32hz0p2+qPJf2v30A15+2/jHEccerUazi7fQHjOMaHkgCiwBDFWsAcGD9FQMIY3uOoDAJZTcpCVAdY9+wybw6BxsS6k700A3o5iUxY3gzLtxP/TwujFNgdlssbqMhq+gg+jKH16Ms4lu1LrRhTuBZL5UvL7g9Ov/YGXn/9LJ78bjeCeVRDcSuLYKqPPt6U7OdEUQkwQwzA4RkQhRDuT1ACW0kZ0BgVwGji5TxeEQE6eR9HgvKJxsCuRz3W1cVgVQ523x73k7VnxY+i+ycyZeC3iKhNCLsVxGZuwCIrZfXFyzKKIIZz2vtHTU8ah6TEOXECMgoAiG3QOhmW5Iiy9Mog3NukOKADGW0fpWbmshj01wX7KaDJz5cAvPydA/1NAf4c2D+vSdna9eb9Mdffk6zeKAH5O44jQIRxfx/DsIXtN84BNGB/FFAbQWP8jB9RxAAKYYifeoVvm75nZtWofd8AxKEzK5hGbIp1SjpznQL28aXKH3533SQpOL48phwtnNLbNKa6uEhXVT/TYG/aLspM3JmK64K8zwPOn7uMJ797gv39p2E9BInJDAr04ZCMvkroQ5HT5zXoyEBNPsbur37+xoTjFEUYBZKsFibWCWOOI4gwykvbM5N+/YtTeXERWE0RODAuFIIAfDq22ztYDx7SEQHMWgB48HbKIPaJNd+4cKMU5FkycTDhIU9KE/oJRtkbxRRvjhuR2EVcZlQHpPRadkUmQX9TQJ+HTQF9HrYE8FcB/qXmmxYQPw8PnKlfrQ+nQF9kKauv/QDg5IlTOHPmLMb98N1Wig8fy0su+DxSBHuE/dmVXSpN1yFpoi2I7D+Eyful59puASaksgyXT//7kMLFTTtLGhMaZOu0Y+lCjTDyEFOu3TjLvJ15+ak7TPmmj0zICODkyTDK+vVvfwWMwf0eFME/KinKWH5i/WOMIy3T/g0sP6CqTAYLyMtoIPjzBx//YJJLdYdPORJkziC1ms29Cs8JOD7HwsQRFoYxy8SzZerxWXMmG8vKYxkGqJO5yHv7qCnGmnwioHvmD1cXon9/DvxyC1Nd/pE2mj/9SFh/qkO6Qm69tJUoAbzWZdLq+ybXNphHLZMm6E8BfituCYtvHa/D5vPzddn8OgB9UFPOumBf64+p/rVSA3o5rgE9AHXBtH+HrS2c3b4Y0mFfwZ2BuEtkMOWEhVgc40hBKHzLI2PLsc2BmLJ7UZyrpMCGNZa6guSapNyEtwLCdeDN8rs3NYWxD9Ampe40Iyl5cxlIVM5kzo/YZS+Vi7sO4Oz2eXy+9zn+8te/mGcE8SM1CCAcFewgu5QSAxRt6DIioNH0RjZPoKYfAXVRFkM0FUn6NBKwxyDZKE68fqRPZHuG6EopH4YRpFZXyjhfENHNu3eOJj0qQJ1A3SoENulax/Uf6998DsDmz01Dem/Z3H/bZvg4dWgwAK+jCPM8q5JAqlPumydKXg5s3pkCenu+FOjl7yZA/rDA/llPytb6pNWnNZlj9XPMXn4C/G+8sYPTr70eHqox8rm4NUD4Il9g02ZdbbDbAtgPFUmrQ716KEzavA8EQ3GQnvwxVi4LXWyxtmwxO2v/sC4qdWFcUQAW1FNLIfCYp09pyPwvLylVctg2Z4hfKBzTntimra3jOH/uMn7xH/8WZkqIQDQEm74w+/gRl5EIEbchk70kYWFPhGDQocGMDuQqhbEPBvRHpwjQMgeZ/fr9vEDcyz/ew7RXv4wcSUE9fNydAY4fdyF2YM6RDucLvIiNa2MDyEsffjhw15tkwsuJYinLpjHPkKtPbqaMLizbl/Rm9GrzxuLJNE3LrCiDFurPgn4NTJYCvT1e5e8UyNfCpoDzIJOxmwD5dcC+1Q+tvq3JQcw3LbAfxxHHjh3HztmLyuLDuz5GgkiJpME+yeZ/hmH1oz7MurpfXogIIiFdHV7Di5PCmCRvLNDT5vSX0huSABmGscsrJ385pUG43toqSF8ZK1TG11RqQ/bHtDPvM3lzvTeQzf/GmR2cOPlb/PGPf4hv/358bgbdZj8sfuYI0GZEQN7sQ/FGqFkoHgcwj2ALGRXIRHBScWpWMuBv1wGQYf4cG2a9fki3fLBupjIRLIgY441dQ/b5FyeDcvtmd1tiHgH7cPN0awaXzo4QjJIx8wU18Pc/zsr0bbCTwJbXSLvUzBOrkOtWbydKZRrelOqpyErmnSXg3jpewubt8arM/kXzvFliuhmGoXmNtT5r3RcrLbBvmW9qAF8F/P2wEOvsmxdwbOsEnu7vQ3cAZP3goeIXITEtgQnF8dGgFkk7KT3EDhXT9XLzb4Uhk0K6T+z6qhItZid5g+KJN7Uk5NXJZXM9qUz2R4VJy1ee8J5s6VnjM0VEwIVzl/HZl783/cUA7YPG7JmKe1YHRg9l6XpMQNiyAQHsKYBLAP4hHottXhh3Yvbh2Rwj6IuSMeAfmbx4A+WmoDRvkD4U48xBBvhln3+SRWS6sCqZf+QD7wF4WYHZb+MQwdOGS5ebH2VzBXBlwCgGG2YURqVMZyaCLafSBmTrCwQbijbHdIMpN5OVmf5BgV7+HhTkVwH4TYP8pu30rX5p3YNcNmm+aZ2P44iTJ0/jzBtn8XR8GiobZV+c/eiWKUwEACiYFOKTR0raSAlMaFQ0lUQ2n7YXMDCrD76YVTJFYBl+wnyYU/f8azrzfiVAjiAuZqGorPJ0rkwu68vPfDsqZZjrKm352YgG/vjUa2fw2mtv4osne5AvnQmggwAakk99AvgYJ/eCM0XABNAQFYQBe7G/C/vXVsu5CTdKAFYRiKIQOz8YrRFBUCzRXsVR2QjIWwUAKNAn005AP+sJFBizjB7CsfXw0XupAJ5GBGTO8wnjYisIcWyCzWPLNceAq8uVJ/c+TiCntPEnC+hMes3fgI1FTH8J8K8D9Pa4BYRTwNli93Ng/6JPytb6vCarsPp1wF5Y/v5+MBnsnL0EgLD/1T6UcQp47Aurj/vnID68lAGZrEiEOUV6PnXSNpxA3NPcpGjqpZQuAoqWqy8FuSShTsvUEdsT3xQ25ZoUiWHbqAy8cw1j2uOFHflLSqtMnULI9Y1VHgzg0oWrePK7J3i6HwBziG6cASwoAnwEYrH1C+BHMw9RNG+oUjBATdGjJ7phhuPo1SN/xS4PURxxjKeeQjIKEOVAKDyE7ByAKgWjNKScOGoItzJ+6lEGOeY+eLPJVqYwRGnIcRgRJPONBWgkpeDYO2Ujh/hcxI/JhPRWSRjwRyxHlzv4+opryK4ttJPk0TfhJl1FFrtsTgF9HraU2S9l9zUQfZ6eN+tOyrb6otbHLVnC6msmnBzYW2y+BvzMjNdffxOvnT6D/adhGM+0HxtBCn5MkV2NBsTlmY4ufUxKoQFnJoEqhKQiyODqmGcJB9aY7ohTCY4mmavf+jZLMBeJvZLwYpi4sDOTzisKm8wqjZZ68NW13E2PHzuBne1z+NVv/hOMAaTPYTS7CPsXdh+7Wnz8RQFouITJuYI/QNiCTKYSRdBU4A+jAqsMZCFWUCp2NJCAPCmGwXj7iHHQjgIYtdFAmgdIyqalAAKTN2APPwmcfO098Fs/fyCVxwbMvedObVQg5IWimTMpCKoqhkwRaLnxnkTwt4uyAJiRaimTTH8p6K/C5vPzVQH/eXrerAr2rWuv/Z2TuclYe7yO6aYF9uM4Yhi2cG7nMhjBB5shD2h4qJnS2kyZguX4MI6UnkN9himlDeYd6w1j+oO8ySZFcxkuQKurVbJwm9x5AwEW9WvQ69rFkq6mBKJic8ieFJqWHZl92rjO9JGtl1yGpsgo6NzZC9jb28Wf//wn8DBEoB9ANIAGsbmHNgYdEICHBijiy0fgKY4MBPhN1vCXxZwXFYB680Q7vwAyBpBx1wxtkMleRvIMMqMBSsw+lDmo4pByZUfRNBfASVmwKBuGupQqk/csnkSrWoB3SgAN5ZDnQTFX4JVCvIuj3FjWr8OJ2ShNCpOrIykqQMxQjv1DRidQbyDEQU1NVgb9VQB/HZDfNNiva95ZCvZzv6k+m5PDMN/MAXzNvPPmG+dx8uRp7I9i1glgwcQ6maveBEggLotvLEiGtAbo86WEstpQ6TZrnak7SLOkHhr95KsbUKS6c6acqLShSVmTBBQUH0waxKvLsvp2arpqouzaUhKqJS3ansrYogEXzl3Ez3/xr8DTwLQxEDAMIA7gLwge7OoEGkgnfBX4oxIgyMgggX/6y6q7Qtbo9hnRKDzjEfBZzEAcAduyd2oogKSudW5Cz5PiELOQ1JN2BRUmn0w5aeuH9Ego+0+sw9nu07yBec7NKEBYvh6rYvCLwXSEYD50hlSUqRMG8KHXoa7HzusI6XpkH6tYDhkikcsi0F8K+C2Qr4VNAeiz8Lx51nb6pUAPeIDP/67yOwjYy9/jx09iZ+ci9sdRH0QG9APYAuIg2VJBzDARRDjAl76uzEYFNBi2A9QciHMFAM+uweC8r6uFZ/Z2NS3Z5PLijUk3uHypHle/C0fj7Yt1qT6qJGogPjtF5Yt84/U38Nqp1/D7P/wugPwY/TYHAf3I/KPNHqN5rmU7B/F2VYC34C/Ps4QLIKf0hBSn4TIKiH6kTgmI6cZO6qpiEFt/bgpiF6bhcQIaZjRA6sFj2HnhCorIkmN5nMwt3k2SnE2/MAvpiAJZuPysC2eqV54D2bNK7z8jsHj5No4oBImXLxANNj2n+IqsDPpzzH4Vdr+EzT8rkD8I2E/111LJWX0N6PPzlq3+QGA/jhiV5RMunD+PYTiG/a9koUyEt31hXORMlvrSi6dOBk4cX34msZ2ieDiZfb8ZvpcoGmegnQOtZe4wk6CK+aHFaT0Am7y2DakcV5/cW7YKS/JYJZFdI+VBWdkNLcHVAtMIRUgfMOD8ziX87skT7PNTDIMAPYcvbEX2TyRKIC3qgjD+QZg/RXBHPI7AnbN+GPDXczHTDBGkZQGYKAlRAgGk0whATEVpNOAUhZ3wBcXwCPrgFK8moajg1OYv5h676VsaBSTvH8TzxL7FfdSPDkQxxHtRHRUAaW6gZRKK6YRMCZhL2TqStnUD2IJ60aX3yZiKKtIE/WHwPuRybMNWAfhVwb4V9rzt9FN9YP9akTAL7CLr2uiX2ulbYUsUwOnTr+PNN89j/+m+eulgJH3ARwSbfYIvgnxg2mKcniuOhtdUzZswLxDBjARsJ6YJtFLIV2DdLzWYUr8mvA4t84OJdG+EpuZKKT+Q+1trGlcPZ8UqBAX1QmTkZRXaiNdOn8Gbb5zF53u/xThydNnkyPqRtmkYGMnkgwT0YwJ+0jg22zvI8x+uPXQTp3Ti4aPH6a+aeyLaESH+JYj3T2DkURFZ4FdlQBHo49yAmhEDsMvdCO+dTP6SHzHIaECB3oK+nRSOf+O5ALiMGhwAK+CTsvkE2CnOjwSy0YUdZYkpB3k9GfiLfhBlBGg9NZll+kuY/bqAv8lJ2XXyT4G7hNWuN+8POc/7TyQH+02YbzZhuqn/5bhX/oCds5cBMJ7y02ziFtGEMqoHArG8cmzAGxAbvT6I0gfxxYYy//QgI7yjbpQrL66cV1FQgd+ApU2nZVqQLhVMNtAwaeX+VRLYSioFcXGURhduUFKMWLIyE6S5/Pk1nD93CXtf7OKrp0+RTDoUvXriJO8wAMMY40ZNB3m2LfDL6l5l+VYByDlnCsTa+OOxKANVAHIeRwYsQC4mGrHTM5IJSLyB7IIuRlIQ0jdjUgpWGWic2kyg33lwgJ7APh8JWCafmL8F93i3CuBHesaL0QFpHwXwTkpCAV7qG1n0hJuPEPBfy2XTAiEwDXxzTH5TYH9Qlr8E7Fs/e736+k2APuDBfon5Jg/buOlmhb9vvrmN18+8iX3muCdyeOkYllEodVdwDTjOca/z6H+hpMMzVgtqekyZyUUBMWcuHrg1LO7wmdKYHXBGc48iRWJpNEkqQ/vNm6OKJrvPmqLmOkqUJbR5PVKn7K23dY71e4V24vhJnN+5iP/85f8J10RbEFu+LraKwE8DAyYORHEOgDIFEOKC7Z8T4Kf5YQf4STFEBQApX47D/VImLouxIKw9/S18+2mEXQ3slACsicgqAzETsd7zNI8gpiZxO7X2/nw+oBwBOMCPN0Ns/DKKzZUBGGFUBWtGQqYYwj1Nk8axHQNBvifg3VI5PVqNB2Vt0F8K+C/rpKy9Zjm2f/NjffEWsPolJpyDmG5WNeXkYcPWFs6fv4pxBGg/ON0zpYfOOMPEVyq98Ar2BH0BhBmPWXcJDrK+VFqIATDDaKuAZxVGctkRCE9Ym4YObBpjCTZnwJ30jElL3hMpb2PevlJZlKzdFdcQPx5pKT/fwed3LmB39zf405//FEoQdo8BQ7Tn0xjD4ihA2X788L3690sa4gjywuiRmX2iMjBh5WhAbPsc37EInML0dQSQ/tYUgd26OSiBqBCsOUj2+DHKwE8Qp3TqqaOzqUZRRfpsQT+ZfJK5xisFghsZIAd0Lrx5KN7M8CiLokF672K54NDHYC4mf1N59SdqEegfFPBflklZYD2gD/ebi+N17PTPks3XwJ+ZcW7nMo4fO4nx6dM4cRveXDHrM4X9EgOWRcY8QtPJUXqW02IZ8wceiKVwGPDntJbFZIGrIZ4Tpd0zAcfSwwsrefJ68+QZOAuwSxYWc5WAbfZiUWVtgbled+3+EjxwF31lEmpbqAh3tQ3ApYuX8a8/fxyuXQCIRoziyQMGjYY50mjAX0w+FOcDgtlFvXxkJDBwZPPx/Ynb7ejIwIwGYMEfxuxDYoOP8wyQ0QjDb8eQ9uahWKB67ShrD3VT7CP199c7lwDfKgitU/z8o/ePMn8dNdgup6QMCAmgSVi4KAEY8I+KQn39yaRBBHTJn24xCbOHSccU5mY0L6U0jQVaTdDf2tpyADgFmKuC/SaAfxWwbwF+eDjKc/s3P7YyxepfLDv9vB2f4y6Fx4+fxNmzFzCO+xFTAhjIoZ8fii8dxsiSM4giG2I7SvKaWStBSpvH1NMGf5OOKMtLJi0rYHt6n7cxFUxkzke5bsncAFujJIpLrhxPMfV6eoQvk0mjKk23cub1N3D6tLhwbiGgb6SX1tQyip/9ECd4BfDFDCMAzsH33743RHAre4my0QCrSSiVZdk/zLkB0uI8c8UsTDlJKaivPgm7J5AZIYTzpAzSRPEAp1jE+0fBX9JLG/ydk0cmcCFWhk7m9XDmHshoIJ1jtIrAsH2ZghiBNLqAUw5ecdSfp5WY/lJb/ctqp18C9MAyVj8F+gdZHbuq6WbalJPAXhZiXblyBVvHjusnEIXBBLM+h00S4z+AI3khBQ/hwUI6xCZpJ3d1UlYRO3edZOeKLAeExKJZU9fuUwakzv3S3UmnAELZ1kTUdgt1YYaNuWBOxy1xzL9SjCqQwkU1L0e0F8mZnl+5eBW///0XcQ+lIYA/DUD8yzQAEJLH0Xc/TPIK2JIF/VEAPo4C3AKvCPSytw8hpBsM6yeOC8CE4bM7JnUjFeZvyoJRRGKXlxXASOYbnfTlCM5VE1FUPvEGhieQdXQAIhNnzUGsx6RzEqwjgrQnkDFRSbnx2bf78YhCUIDfMiOAyshAOcUo75fkN6MDcGlPjbKI6W8S7J+nnf6wgd4eH5TNHxTcl4B++I0R/BlnzmwHF8191gc5gD0ZsA/XODpf9PCAsTByWXIP2VY5MnpxpSSAMSaMV4Bnlw6UjCcW8EjmCGwYKBttlPeSMSS2lZUp8wE23AIyx/Zobj9kiOlN7qgIaq1Ji8dKGC94oxDT1BR3YJVitURmnDp1GufPnsevfvPLMEEL8djZV+AHjQH8Kdj8ZWFXYv7Gpi9gL4pgTMxfffxdGIznjygJo0TiaCABvx0VjCCnECLrjgpE5gYCQMsK32iakgVgmd+/CxNAhpiLQn12NbDa7klGC0jALesPdATCaYLZMfl4DUACfFjPH2TnNp40DcWRAIRoGWWR6orlNeBsFvRfdTv9FNCHd6YO9quabw7DdLN0YnbJCINowPnzVwN+7z8FKD7uI+KklfCbeN0C9sL0Da0ljlOxFtssc4+AaYipyW5gMrdJajVsijZsyCQM90cQXipPq4W1hPiSVL0wZfAB0z7TZnMp6VgVghfTmnplhRayZcL0ZUXRVPLlBZ8/fwmf7/0Gf/3rVxGYtyB2+wDo+wC2khIQ4KchTvZasI/vjbxX9ths6WBHAXD5YCZ641/1DrLKQJSNjDgYshhLvY/UE8iwdlUCAv7yV2z2FfCXPX30RlivIUkHyNfDdNGXjgfFXCR3OtYp7B/G40dGBcLg440Wu386J3Mu7D/2Ffsw5xYqo4qx/mA0Qf/YsWNrgf3LbqcHlrH6GvAflovlQdn8FPDLb+fsObz+2hsYeT88uozgwRE6K07choc7fL4OCvhuepLHtJjQ01sxOig4kjkO4QZhScITqFkdYu6Q+d/pl5RCWKbJUjBqq3gkqvrOmPqkaUU6MqntcU2oEsnp3II9z5RBNkM4lj4/fvwELp6/gn//xb+CR1I3zTCZGwCehjGC/wCOLp4BvLbiRG5MbxRAsIHDADobwGfD8AMQQ/b2H8VmT2biV86lHJOmUAJRYSEqggz09bu/ohgY8S8lhcAhr7ByuyeQdQNNJiFvy88ndvUvydNtnuwwVFbAV4UTgV4ng1U5IIG3nsMoh3TuRwGGN61q08+Z/kHt9auMBtY13RwE6IE6wMvfJcy+xaQ35Vq5quulawszuAH4x44dx4WLbwWffGUM4UViAPvC5iE23WTLD2mSYcNZWMRpR8MsABpU4wTBuW1f08Ti8mErZ2kANsrGU/IRRZFIr2U41hxulJFpAAv2uaIwwlHTeKB2ja8d+nSqzXI1lye3FeWKJpzv7JzH57u/wpdffhmBJoDnKIu3WOz9AUVYQT/asmM6HgkYZKRARjlEYCcKcWMA72C/t/MByU7vFQNFUxD7cwFuQmLxamYa/V9h8ESAsbcTwYArDEsP/ZPYeu7C6SeMIaYxs5ArTSxLmfJ3SHWIpxTHvhBAF2UW2yYjAacM4o0kBXr2QG/OldzIeUVmmf4mQf5Fs9OH/uPieFXzzRzYb9J0s6oJZ4rdyzWePXsBx4+fwrifwB5EsvZDUZsgYC8PVwJ/N1eqk7bxKVTzfTx3wBuRs5ioNKAnT29sk09oADkyXXaIbCi+MmUbkMpOuQj55K/Lp0BMNqsfKTh1RCa5G/6Yw9wPJLRdJ2irj7EJHDnrP6SuiQ0ciHDpwhV89uX/D+MonioBHUZnNxfTzlYE/9gr1u7PIR0LwOuoIZwnNk7G5EMRzJH+ugnfCM5Dnia+xwr4sd0yajAjAP0rXjhiEiLSawgKUmzw0U5PkfBE277a1GMDnIsnR5A33/nV+oSt60jBMHgZhQjJoVifLhSL6ViUXlQCmo80Lo0EkMLjY+PMQhU5EOgfhN0fFOyl0zYJ9PJ3ld9B7fObmpBdFezld+rUazh/7ip4lIc0Dm7VJ5j0YRz1qUIEUIlhQ/MRQ4RDsccseWiByvbHIZ88zAriYoqPdXNktQKSZIpO5cX/WGYhoKATPqJtE7KyJchlkAFrmYDWSg0w66CkAeaSryaqaOxIgl32ZPKK9QqdY1tyeuHzQUk6D+W8eeYs3jyzjS+++DyY6XQ5bQD5kWr2fuvlI/bzqAyM+6fz8IkMmC3zj8cJqEnn+JX5K8MX4EPMg1IZCJt3K4RNG4oRQRoNuLkCUFIQEDt+nDeQ7RmEncfn0ykDMkpBRggg6AIuMqMAjsqKBfyHVC+bfoyjCD9yiNekI5bYj5HfqAkL4Xkk90IkWQn0NwXyNdCfA/vwjtSP5XxO5sw3LeBfaqs/TJDfJNjba7906evY2tqKkE7YZwR7DuILBATTkLyUgIJcAWZSNiRpZN2U8J1MupCWfJhJmzP6EYijhqQ4WH8J/LVeq2BiHTnW+6rYnsTJaHnxtPX+ukfyeRGZlq0WnnWJssqVgzsn29l+qOJIS1ZCMaTXSxImC1y59HX8/skTPN1/Cpbv3ZpJVI6MPnj3RNMPpUne5OKZ7PwgBkcvH4YArfylqCQM6MMqAMv2I5DJ13eiPoq4nCmCqHQGMf2IGShdC1EauTaVAaxSCIBO9t5TZM6UKwMBfwvQ5q9MMjvwlnmI2igAOkHrPYiQ7hFbxcPaDm0rJ6VQ906YAf3DstO3wF3CwzM/b6dfBejt8RzITwHoUjv9pk04S8C+Fde6xjff2MEbb5wNZpwIJiQ+xuE5hzoysgCOmHI4AUxkGPFPeMSdgkhh8oiHUjmBvHXMt+TWBVIqUh9+ScHmFYlttSw3UyCucUAAOxPPkUmLvxLrG5mqKDWHGfk4sYvGdGhg4rP0EWSSyCI2vbSULhMuO8/Xw4RTJ07j3M4F/OrX/5mKJQESKPhxNI2wsn7r4hmPEUYC4uKpWz3InACxGU2Edzmx/wT6RHBKgRWcBeckLVSJKHiPAvSh7aX7pwX+aL6J1yaKwSsFw+DdXIEwa1EWbADaKAgH9LEONsf6RMlK4wjwnBSW2Oqt548yewF0FnMcDNNHVB5knzons6D/vOz0hwX09njud9iulWtNyC4w2Sxh+cMw4NLlbwDYwv6+TFRB8XEc5elBYvAR1WWLG2W4hGC3BaD77dvnTV5cqwkouhtzemIVtN2wIGkglrpItAenpGTSwKaRxiSlIfs1yESrXpwAudFmZoo6XoO9Lqsm/MinalFlz/prrySZtng9xT6NdiplufWuxErydoQeu3TxKvZ2f4O//PWvCmYARYBX5EDc4B2jMFPj9QOI2+R+8PZBBPxxK6WhAaw2dykf6bZGYOYI8DIi8KMDgNwx9K8qiiE9G/liL7kW0rpYwd9PDItpSuIypaAjAjOBq6OAxLSTySim0wcnKlZl/KIoIrC7OQE2ykKYOycwFzPOmMoQRSHEvxj1RWmC/vHjx6vAfhimm03Y6QEP8PnfGvC1APR5mW6mmPy6YJ9fv5yfO3cZp0+/jnF8Gt+V8PLsM0Ns2IQxbT8Qu584h5UIrjQGOMvAHoi+/iSAbMEYqSQ2ZyafY7n6UAvriuk4eCcpGAIhDac0AnasYbEut2qR9RoB8eXPG1pj8oB+9rGAdFEG9tymy8ph3xUqRFnJnCXK2jojx7eO4crlt/Dznz+OfRJBldnZ+gMgReYODnM/Q/TiMS6f4f7Lgi5RBhb4xRwkI4fE/lkBHFpn3DtNAZ4VoCUsUwCC7bG8dMymTMO0deJX4sd0vQLghVKIQG0mhlMfGcXB9q/Y+73JRxSAMn4YRYIw4gY46twI/qLMIF1BwBabiVtTL3uDp5WVmP5h2ukPCvRyvAqznwLWg4L8pmz064B9fs15fxw7dhwXzl9VhsIUPXVk64XIRASAwrPPGmOfJRLuygkMKTJoFh9JimAbWYyuSDX3zt/U8F8Cx4L2mvseh7fyCpkyZUI4sX+ksppbMxhQdRfbAGk5UN2Ug7FrdrO81OzGMz+2WzopVBzo8dmzF/Db3/4Sf/jyD6EBMinLQ1RiFE0ZovXjvd4Pph+KX+Jis5Ar5DU7dKJc8esUBlFUCqRKQMw4yXc//RKoB0BUgB99GmRKI80dsLL1pAAIyZRTAXvL6iUeUo5XEArsOhLyrB8C3lImG88iqwBMmJqk3CiA9Z3U+QApH0jXVpFFTH9dO30eFtrSZvZyvkRabN4erwr2LdA/bBNOC9yXAn5+za1zRAZy8eJbOHnqtAd7ZiXPzMJ2ALEfBnu8UF0ZmCKaFj2rGKMpRMMUeEuwz6A9HHnqb9KaNzsFRmwuDSrqbeTKtcoAep15mtRatidl/aYd4NoYwFRRuS4WxaIKwTL37GpYW59VnFdo25QC4x3VUclAhKuXv4FHn/5f4HFfgQ56z8OkrHyABcKQI+jICAGRRXvgl1HAiDQPIKzfgL+6ViYvIq8AUpcn5h6P7eMgrF+BnvyCL7X5A2EOYtS218w8OqFrz1FJZ8A/TfSyaiGNE4AWoLdlCUuHUQAcwd6OCkgUg7zL8ZyANKELHMhl80Wy0wN1oJe/S38HtdM/b++b1vXa8Nqx/H39tTM4f/5qYPHjKHogktTA5IIFRPIo9MWbEBmfsvcY7MA1PHyjoKVGpTLJ5RELZ0Sp+BAHjByVyYd6EvgpmrIFcVFcUrINCIlGSi+I7GPCsRWaB4FTOS2QdJ6mIZtG+yjFI1ZBNtImFzC1isWZoLJiW2J1hbo/WQXB+W0AQDjz+hs4t30Ov/381xBQF/MHEcAUxnJi60/MOLJ+Y8pxwB8XbLEy6Oj6CQ/+pMe2boppxNYf6zOKwJtwkMKy0QERRffPVA7ZSWZCNPtImmTmYU1vANpcf3tEkJh6ypMAPrHwaJqBYf8K5slDSBWLKAOIDZ8juEue8Oyk1cl1XF0b9A9qp18V6OV4CbOdA9JNgfxhTsiO41hc17pAL39pGHDx4tdBNMQdF+O9gWHZjoybRVfGjzIRVgND4sIpiFLzuxTgJLN4PWkTVxeTUQP6X3yQCUDcHTQEUkzLbgvk8IjFeQlzbWBO1wcERuWAmHVkouy4dh3yp1ACyBJYJWTrAZwvNfs62CWs5Lfx8tetJC5mJYpqCMClC5fxxd5v8PTpPtQ2LxOfGNQcxwrCsmqVUr9GUGOdRBXvF2HzltEn0w/b88wFVHw1Ldgjgnt+LPMB0GOrCMw8AZGuEE5MfwsoTDsTIwA0QF/jjadPNhpwbN7OMbCZU2A7yStgb5QDjx785ViYvlUGFVkJ9A9qp18K9OHBLEFrju3Ogeu6IP8iTMjO9UOrz+zfN8+cxZtv7oB5xEDyVkScUNYMBRym5KkjUf7AnkaQzrBRRhACTKIrKl7+ZpI4jBZ8ivDQm2kC96ykGqjoF5LrCxdV1iz1thTc3GNrmLUfK6B6VtQbGixBsb3ZtRt27otsjTQqtXMRBQZw6tRJXLwQPq0IDgwdGMAcffTj1sXMxhsnKgOdvxGUVQUgbptRAaA++ZtA3qwBUPOPxAfmn+oQdi8jgHSMJvgLCCNsI2EVh9nqIeQZC6avE8JojABymz8xkheQZfxpNJBMMtYElPII21cvJAF7N1IQJQPoh95FKR0E9F8GO/0Shr0JBr9EiWwK7PPrbvVJq+9sv25tHcPly9/AQANoCODM1lKiI4tk87ULjxKomvul/yG++CWqcOMoLy8PS55AEbjJF23g3AGmb6QajALzMconaiNThldqrpgqS89bD9dedvVYdeSz1YpOitGXn5RopTTyaYuImLloQwy4ePES9vZ+hT/9+c8BANkDf9pdMoA/R9AKNyYCHaeFWW5+QME55Lfmn7SFg/Xq8bb/tOiK4qiBIA4I6VjqgYK/TOgK+JejhAj+I8wogKOC4bjoS8xYFvz9lg9V0HcAn7t+GuZPicVrXma4OQMOZSiYi2dPzAPIvEAYSYTbuiboH2U7/fPwvqldtw2rHdf+1sJ2di7i9dffBAjh+hyCcgB7ADphGA2k+jwiwUn1USpJeYnsrSwMfXgd8zXP0DiaolQDjBH/jPVS9qCRFyYiq16SposNJVULoDHVr2Z1t7WEuUSL8+ayda4AqovK63U5aseSv1SzTtHC9NhUXwv7rUms4/ixY7h86Sp+/vNHwS2TDONHVAKR9cvKUCZCYP8clQOHPHLvnJlGwE/cP435xyiAmrmHrBKI+di5fIq9Pl1rYPdWEUg4OyWACOQ6ahijGSl+PpKFZQ8W/FnzhTKHOC8QRic6EkDuMipK0Lp8mtEAV46R7P1JAdhn23xvAEERkz7TK4K+/YjKs7bT2+MpAN2E6WZVkN+k903tOvMw21+1sDy+1sfHjh3H+fNX8Ne//iVM3oabhYSG8u4L60Bi+27bTPElqCG8PZesXACnT9M6r5WYM+vWeWy/DH+LrJY/R7BvtseW7usL4CvuoqZex6Ytla+hcoV6sxkl1MSURz6gDuy1omojBQBvnHkDr50+GXfhNGDM0fwSw4iTl04AKGH+ZgWuXSOh4CtKgDWcLfOnNKpoevuI2UfTEGoeP8nGn4A/mXni5ZsRgVUQbkJ4CD1NYwB+gJ2SSEpDRitkwD+OCDLwB0UT4yBxaT5BRkPpOGP5MsJCUj7pIy2yM6gdBZSyGPTDM3U4dnp7vEmwPwwvnCVg3wpvXWerL1p9Vvs7dfzVV1/hf//v/3cM1xSNm1TBaAeGjXyuCNL/bfZ8XZQU2SKpmsQkqKsXZKHK100qTpVVMjeCUbROT3OGTYrxSdGkNO1eq/r/rCDtlgPCCpdXMI5P4zMyxDKF8cePrIgy4LjYyowA2CgAUsYvCkDA1tvFEc0ZsjNmwfSRMX3965VHMvOkEYCAe27OsSw/N/lYGz0TuY++pbUAAvSiKDh6LoliG2G9ljju6xOuz5t1AvhLn2ReRMbkwwr+bPKbssT+r8pgXP0jKtZ2D3jAl/MlMgVWS34HtdM/L++bVRi+PZ/rM/t36tifM54+dW4dMdT9N30fQ4HNuAph1f9yTi7idIs5aaXv8iwlMcpg9I6mFWX++2DeUsAHbUXgFz99BvRDJUNiEpRs8RBzkGW/lExLOdjbEYDf7C20S5RBvtBrrJl/gKTXVCF4tp8UAeAVBVfSDBVFYG39EfDN5m6qGMbI6oc0scsGzMUjKoC/LPgyihNp5EGIOKJxpcyCfrhPq7H6HIhWBfpV2PxBgX8VVn8QsM+vv9Y3S/5OHS85XyqrKAQH3szJhExxOim2Qd4Py8M1P/twMnEd+J+HSK8nBingqsAflQDHPeWTAhhUIXD8kIhOBHMyyQAAlPlKHYMCGVcUgJp8MhOQmj4gbJucgnE7fBoTjh8RRBflmN3b/mFAXMJEAaRfAuioyCoTvWmbC28OaoG/7AeUTERjVJAC+FEBQCaIo8JeB/SB5UAPTLP5/HwJqD5rkD+ojX5VkH8eQF+LW0UxEEXubvJ4u3ZgbCQsX14eTmDulAR8eE0hdOB/XpLdIbdDaARk8fLRj4yI6Sd4+SCagpwC0MlGowBUy4+G9Vvws2xfJk+3Yprc3VOUhVcAnvWT1lmYf8aS+XtFYMG+BH4y4B/iRz8PgAE8RO8fZKyfGBhHF2/BHsrw04fY9SM3A4OjNiMxVVWkCfrPws1yzk6+CZB/FhOyrett9Uer31p9mh8vOV8aB0zf6xrjJ8SXIhSumEAxMrB7QDxniFJ65mTuCQoEQLRtzikE34ouz0bkDtieF0N3tCXDmHXkc4NRATC2oGYh/W0FUBcTkkyEigGexP8/KhMFy7S4iyNYJpv5oHMC+T7/AQHTV74SiArrF/RPIC4uocrsxzQKqJl6Wszf2uhlDYAwcYZ8ACb0bwJ+in05ggYxX5FXDEgL4VQZMKe2y5eHKtIE/cnHYAK4lvyW2OkPm90vAftWeOta8/Ba39T6bS6sdd4KmwpvxbeAn/x/PjxkDLCQ/nPgH0ahaejNJNsrcHofib2igCgWuBGChk9eWZfNiwV+q4ZlKZD4jiePH9ZFXnECM4I9ZFEWJwUAZmPvHhSkxZ2RjfFcN1vTCdzkyeMmeguTkDxsAuwy6ZvOHXFR80wG7PYbvzJV4cBeusYrAG/fTxO24NifA+t74DyDOF5rBH+/V5Fl/gb8dVRRB/7FoJ+D0RS7XQKgL4qd/iATsuuy+TmAnwL+VthU+Kby5nw7vCBkAFqG4yFWwplltaG4OEbwjwohFMMxjGLZYiKSMlILOut/HmJVrx+HyRgt3LPAyJO7J0W2byaCrQLIwgJble0IKDL4CNK6ile2f5CVwWLL9pO9wuxrE8BsPuSuW0tY8w1gWHrUBgrqUfmMEbiHSHYIwGC3ohAwFuC34WnDNxDFhSgcvxksysl4AkWlimE08Uk5eI+oMcVXZBb0p9h8ft4C0sOy0x8U4NcB/Kk+aPVX7e/S46mwqfB1082UUp4pGpMJg4I/RXbG4k4WRwRiIrLhunAGIVxKlPffVYc66+8jgcOUHPhtb7OyfiBtKSD7+ARmL/YRsWVbti8KYAvh/m8lJkwDiKP/vbL+CNLR/JMmMjkBpdr003yA9/kXpWI2fHPMX8wucRRAsv0DDHjDuXXqRrBirYJcumf+aQuJCNDynd9xTIpEfETtSCHOLsunKaHXb1cCy+Z39TehCfpzTLb1O0w7/abY/Ms+IftsgX6ZEMeXI5p0uALwgGH3hMROEIexOkhgYwYSBhmvKTP55CBf46NdNikt4I8AGWMI+0geOxH8nWlHGH60+ZNRBmz+qgvoAHAEOtkqRDyBCvNPvkcOB/u4KoA4+lAbvygFmTAm99PpK50DgAHxdOyUQjQD8YD00MrAg6AjlQD2Y/rko4wULPjrYq1R2wy2yiK1vbD5V6QJ+uMoe7EsA8dVwP552unnAL92zTasdjz1d+p4yflc+LrpNi3K+uUlkMlZHQjIg2jNPZHdy/BdRgjC+kMCLGH92ga0FUKXTUmC9noPx3uqnwSMICwTt+AE/mKTZ6MAnPnH/zhOEId5ggD8we4fPYDYMP84SczR1GEnfFExB+UTv8n2LwogXLNwGw0TrpP9taMA8VDlUcCeNZ6GsMtnGCmMuhV0YP5RmUQTUuE1JP0pIwVNI+elTIJ+Dm5zIHqYdvopgF/K5PNwua6l7N6G52H6uM+A/pLzufB10z0TYf0PkcuHo4z152YdVMORXlgAZOKCQkCT9dsw26IuhyWW9aewZO9Pph8H/gLyYqqw5p/o/pkWhFnWL3kY+jGXCvNXF04N4+S9A4b/ypcAvVUCXgEkUxKQL/iyCiD/sTX7IOq6yOR55FCXfH+YzTYKQxyxTDJ/NiMLcYc9IOjPAevzstNvwka/lM13oF9H2B3psyhD78pooGnuATRPTKGA72uKQkn/dNZ/WCJAb8+B1Nup11ls/Qr+QwJ/4oiKBnxVAdgFYRn7Z5uew4/F/EHCGowCkLAArmkEwDriIAv6Ogqo+/3L/JMFdyoUQMa8R1snm5EAxTiO4B2vR8KGSHgk/8BQc5lOOIfr132EGk98E/T39/cnAf5ZgfycCWddsAfqbL4F7ktAf+p4KmwqfNU0L7Io8EMAHgn4YwJv1gmBnvUjTBgK60fj0Tb4wwb40UrfZU3JgV/CgtRMb0F0I5twg4SZcoP98xYKU5BZHOZ/ERBlsyf7pRVVADBhqf5AOvKPvVj2L20TJSKjASRFYMC/vZ0DYJUCy+fVhtBrpGDvwV/NPGPc819X7xqwPwjoLwH7TZpwVgX7VQAfaIN8B/pnJwoRAuRi64/Xqc9rZTQgxC3EATrJa8puVdhZ/2FKDfhDuPrxZ2FVBGROAKwTuvkErwC+nNdt/14BCJpSHB0AYvsvRwAhrTJx3QI6LgRDOpbRQlrhG8sbKJkfCd77BwHI0+pcNgu+EtvXeQEzB0AZ82eMuv2zBXu75UNNmqD/9OnTlcH5oMC/CthPhQOYDa8dT/1dejwVNhW+apqXWZSEsxAxOZgZDcRkCuLEyuJjcMYxOavQgz9c+i4HE9PJWXhU57AL71JMBfiFWYvJpljRawHfbgcxwf6ZU5m57V93AZVjmAeRkLaBMDuBxtGA7uwJOZZRKEWTjLk0Bfa0x04y+cRtFIzHkVvwJVsgGWUgE7yyVYUu6IrupysvzloC+ptm9zUg35SdvgbmSwB+CtznzufC1033qoi+8sLGLfDHBGk0EPEA8Ky/yeIt+zTgb0mlS99lMzLH+iVNfncyBSA3V5l/TQFkk735Sl+rAJwyyNi/HQEA0E3gZDRgTEDW/q8bwrldPmWiN5iXdLLX2f5JgTw0w5p4OFvgxRUlYEYDqgzC6Menq92HFUH/RbfTL2HzHehfLCkBHgr8gB0NoBgNaDjQAHLLPius/2h3/SHKNPADUNYP1BSvALyZkHWA3wJ/A/Z2NJCzfz03rF/qE/ZhmX/VBBT/mtGAnwOIrNvmJdlTyDyoRLH5Es5RGTBkawYgmnDMOcmx+w2FsqjJJOhvAuRXNd2sCvZAnc23wH3ub3685HwufN10R0Uc8CMBv41Tl+RsNGD99i2QlyyyUmmXQxTbwVSEt1m/VRh2qasF/xn2b9i+7vap+/60FIA1AVn2zybOmoA4/XWjAc/+dbI3tl99/mH9/aUbYpz46dvJXGMGwiD4NgKDfPClPhqoySzoH4arZQvc5wAfwGRY7Xjq79LjVcNq0oF+WiwnVz98E6dmINRHAxoe8aJk/V2en9SYf876w50qwd+afAT8c9BvKwCOph+SzcrcaMAqALPtg5p9EMF8NOexgfpw7cc2DShZv1ldbFf6xvScmX5UCYxUndzNPXkwhPZytOmzHS2QbMBWShP0v/rqqwOB/CpgX4sDSoB/UYB+KnzVNF282Fe9BvyAYfet0QBQsP5+J56H1O6ihMu5GHqSCpBxAGv6TAE48Jc4C/ZWAUR7e8v0Y11DC/u/lJ2ZfWw7xG6uny60rN+OBMxIIS7AUqQXv38Aau9nhLGQ6p8p8M9HBmZTuoosNu+8KHb6GpgvAfhnZb7pQH9wmQJ+SNzEaIDhC+h35HlJ3vM19WveS6RVu57127Q56FpgrrH9TAHk4J8v+qp6/whAD2Y4aecEOGuT/StgL3UbRaDpzChAlIG4fTJUEajvv+7Tg3ANhTKI9Yn3UCaLmH4L+A8L7IE6yC8B/Dw+D1t6Phe+apouq4kF+BpMzCmFfkteNLF3LQ9L53a5HSn4W9af5a2afCrmHgXnGOaAvrHqtzABMRLrZ6M4yDWpYPG2jXHxlyqAgcr0RMC+HENHE2zAnyPzD/v2WOY/RjfOyPwrsvJE7qqmmyWAD2AyTI5X+ZsfLzmfC183XZf1xb7CtfCpOFTiujxPyUG+xkST6ha7fjJULAV/4+HD+bGAuaTLJ3bNhm/cAH89t6OMjOmr3slYvcbHvPvWBGTMR7rS144MYh+oMkDc04eMZw+lBVvDBkF/Cdi3woES4Fsgvy7ArwL8c+HrpuuyOWn1+DqjgS7PW+xdq0u4Z7lRp8X6szvMAn7GlCL7+lTBXwDbbOy2FPzVHBTrE5DmDMBV13FKb1cDu/MhMwtZhZbA3p8zdDJLd9vkzTD9pWC/aRNO7e/S41XDatKB/sWWqdEAGnFdnrfkrN9LGqmFdDnrr++6JKwfSKtRDYi6J2WC+Ttgl83WDPhX2T9HW3pyzwxxiKAcj3X7h9jeYnLYgr2UBbhN5JypSLKSf9AHanbvItCvAfxh2OmXAPyzMt90oH+5ZOputZRCl+ctOWNPoeRCvR+PTd14ww07lm0syYRPgX/lp26XWyiVQp7WmnyiIrFun2r2yS5CQbxiAnLeQIb967Epa4i9w+3eWbwid1XAB0ozjg2T41X+5sdLzufCV03T5eWUfmdfdPHMPx8HJPC3aiAHcJs6nrMBS2tOqU36svX6qSgBt/1zZP6z9n42Jhpj+4978DgbpGo0A/a27U4h5GafWM8+EutvUP1Z0H8R7PQd6Lt0OQrigTtn9RLKGpq/uxPjOWW+1tYuJh1Lva0nTwv8xWtngb1fRxeDMfMY8Hb2fyT7vDRHz227EcoWYLeKQCez1zDv2P30X0Q7/UGAfpV0Xbp0OWyZsM+bmNLkM23kaZXnGTUyk4+l3XZPn5r5JwJ/K00+Z6CfioxKwDJ1+61FvSyx75tzVVr7UM8kaxayE7yNbjkQ6Id2HJ6dvgbMS8Nq0oG+S5cXUVqzLiXzz1m/HREsN+JZ88noQbcwukfwz3fsdMAvxxXmn4N/bvbBEM08VAdvRgJ/nROICoT2U3oXb01CpawE+kBpxrFhcpyH5eH2b3685HwufNU0Xbp0ed7SsMm7+JbJJ0/dUiI2zpw7wLfAP6T0zPBf7joA8xebv52g5cw7R9LYyVrAKABzKXY3Qh0p5NeZZPE3crudvkuXLs9G5pl/vllbaeixoDcF/tQIsyaf3DwzBf7Gv786wbsFP28gJhsD/mqPj8rGbvVgFYAOSqRdyOYA6r07y/SBeRPO1N+lx7XzufBV03Tp0uVlkVWYf7Lup+9zLSnDl1VXAAOCS4x43kQQBkO3UuYc+DPWny/6YvPFryb4y3ksi3MENyMFO8Gruo4reYLMMn1gdWa/9HjVsJp0sO/S5SiIB+1w5pk/FUctWWL+EcCUvXXMh9yRA3ML/DN7v/P5l2PzwXcF/6EEf11kZmz3MhnMXDfprMr0c9CXv+tMyC45nwtfNU2XLl1eFcntGVTx3UkhdZNPxZZf1JGbdWZ+4oLpwJ8RVt0uZP5ucZgx/dgdOYtFX2K+MQvPRFlYut+AyUnQB+bNNx3ou3Tp8mzEm2s4snoysJ7+1kw+OfDnYXPMP/upLd0ybjYgnIN/hflbn36OiqFg/tbeL+Yc4/KpE8Bmx08AK385a6m75dRx7XwufNU0Xbp0OWpizTrC6u1uPNbejxhHLked9VuW7wzkJl0N/IVl5yYfSqBtgXxqwrfF/J0nkTlu+vxjPZs+8Ozt9B3ou3TpsqoIrCcDTwJsz/xzVj9l8rF2/zkFYIDfKgJr71fwt2CegX9z2wc7GWxMPXa0oaMPUQYrgv6mzDd9QrZLly6HK5bfC7SXk7kW/MvVvDVAr2CS2xcnTy8ik64MtwWDc/u0dv6oGJrgnzF/t/3zFpL93oA9bwj0l5zPha+apkuXLl2WCjvor0O3nwGQnfpbTN6mBZxPvIJ47ukjWyRQBv4C9pyZgYz9Xln8HPPfqiiQwde7Lujnx7XzufBV03Tp0qXL+sIO0qemaVHxA5Kc5SiAvblfoyz4C9BH3/58ewcL9jL5KxO+lJtwxFyUKQA2IO/y5JvFHQD0Vw1bJ02XLl26rC4NM0wU8fCRlKimzsFewirHDrRNlAV/601TbPEQwXxuwtf5/GfunrkCEOB38waSppQm6Gt3dDt9ly5dXliZsL9rCvHXSeA/lbo+2ZsdM5A+zCJRAuIwoJ7b2LNJX+aUz5mB8q0e5ph/C/xLOTDTXydNly5dumxO6piTg7sF/zmTT8pdAXw5VmCPeWwyrcCAfwH8mQeOra+21YPa8xsKIP+aF2+Q6a+TpkuXLq+6THPoZyd+aracyF1i8oGJyW36WanqOWNNNfD4zpI/A3/dIdP43ltvntpWD86Nk1Gu/pXfBmz6q8R36dLlqMmLggnsjmrA7pdoUUU5WAC2Nv34XxP8JSllgI06+LPVDBb8o0mHLfgPqZCmD38O/KXMMv1cOth36dLlZRI314oc/MP/8yafSqHqumkA3vniZwXqudjy5dy0UD+pGMvRD68Y9u/MQDGcor9/rgwqsgj0O9B36dLlZZaEu2HLhrrJR1KksGUFVwDeVRpBXs+tGSgDewbS17zglYkCvgF/5/pp7Py8oYncLl26dHmZRcB9mvUDpcnHGoqqBSPtbS8AX/Hu4exc4hnQXTOt2YfE7dOCvQF/tufSRjEJbVWburJ5p0uXLl1eZrHwbdfjwh2LciDN4+38mQJQDRFZf+7OmQqpgD8MWwfcVg/FRmpizjGumU4Z5EqglA76Xbp0OXKS8DYAbL49czpO9v5A3jmBuwV+B+AxwIG/GTeUtiXo5K6mleK5Dv66mIuQXDNro4FSOuh36dLlyIo36bCx+FvLfu69E0/ZhDvXTFu4gL+ETbi1FhO+vh3K/nXBlyiInOlb8C+lg36XLl2OvFi8TSYf606ZpVI8FvbesPc75m/dN1vgb8w8rnXU8PYxk7+d6Xfp0qXLamK3X0uwTPN++WqHLwqszxqrmcjOEXCWIS8reuhY8HdeO0ZJkUzyltJBv0uXLl2MJNg1H1l3HjdoTNCy0RSZ2Scr2Y0UnDIw9vrqZLF489jCR3Mue/q0zUgd9Lt06fKMZMKe/YJJOdEbw41lxSX0mdJJYfaxIwWqpNcAFH3F+YltiFUA1tunlA76Xbp0eUby4gJ+Sx35iV6AiLzJvZaxMPugAcDifZOlX9RNNXOQ8eKZ+HJW3ejTpUuXLkdIJizpIV6wmTl5YkpGNDJbbx6yJzaN8e7RJJXhgygPZfOjSceV8EZ96Ey/S5cuXQCYSVsLlpkrJhNAcWFVmNulknC3mD+QTeCW1flM4rHDRhnkGsKad7K8DTXWQb9Lly5dVCp2dAvmYjlBnLeNH0FxBL0F/q488fbJbUVZYkZ09QR8JZK+5vkz1YAO+l26dDmqsmhe2QBzhqVC2CmafBaDf+HtY4HbZKwu0rIF1Jh+Lc5LB/0uXbocTbEY2wR/Tm76NTB3zD+u6J0m2iU+qwkn1yrWBJQz/FwJ1EC+M/0uXbp0KaUF/sZqUvWkrGA0gaPZnupMPyf0br418+ZJEwetDFn8lKkoSQf9Ll26HG3JsbR2jmXx1uSDGvhPTfgCyZvHLuIqEhpAdxO8NrBt3ukum126dDna4sCbpsHenJdum2nCNekEVgVQumZOtEd30SwiGgW0wkrpoN+lS5cuQARm9uBeA2oh4TEpua9cmTymmKAJ6vGFmDqJpwB+bMdNlN/NO126dOkiUrB6QV8TbywnLGCfpweQ9tGxZbKpw5pwUI4sEM1DOZA3t3awmqY9lOig36VLly65WLdKd57Hp3OFe/tlLMVhQrn6NiZozRloYGbfdzt6tiYJ2sMJ4sbHcIkmxgddunTp8ipJjZXXnGEW2vuTn2cMrLnZI0vr4luzvTX/0jbAMz8twjrT79KlSxdnosFqnjz2PBUYXDfJALKdM8gVii3P+e3XvHLgwstPPU4T9s70u3Tp0sXKrH+9OZlz63RlUqYccns/Kvb6qUbZcGTKIgR0pt+lS5cuLXG4St6e78DceuEYH02NR6EMwoItziZvyQD1TJtcmsaQhIH0iXegVWhn+l26dOliZcpzx8XLeQb81TTwoJ1/XnFqwVY1vuLBo80lTcq8XxbVQb9Lly5dsIHJW/gJ4ZUnbxttmoovKvINrIF+N+906dKlCzBtopmbzJVjzk04mZumCDEo2t7dfG0O7pwfkPkjCqbhqtng7Z3pd+nSpUtNcq8akcnJ2jzPhCvo7OTtwjY6n33fmM70u3Tp0mWpcOV4jpVrvGHhbiSATIFUtMDKZh9Zt1ub4C2lg36XLl261NY85fFACf5Nt04D9tUJ4WjTN59PtGu5XB02DJVzEl1i/fVz91CTvJt3unTp0iXKFJDLOUxYzWUTqABuBvxA26yjZeTDguXN1vVg41ik7Uy/S5cuXURaJptmvPXUqdnWoxCbQ1Ky7z7HVYB9BviEFJZxdYZPTmUSU39n+l26dOlSyhIXzVr6JWmmJm8Vsalk8C5NuwhJ05l+ly5duuTSAtBDB/sKywccRa+ZbCbnaRek6aDfpUuXoy0HWhgFrxwI3iOnGC3EA+Ocn1t5/HdyZ9rZWpc1IR30u3TpcnRlCtitaX0Vzx6bODfPF0yfvD2eGX7/nFaVsWCujAZmMnfQ79Kly9GVg7D82p47tTKa7pNi1mG4nTGrZSDTJY1VtzyP+v0buV26dOkiYpn9nMdk7rlTxJsDagwl3NezkiFeBweM6bZw9ltg3+lMv0uXLl1ECnNMI92USaeapoLYZBJkH0zR0qoTs5kGqJD7KV3VQb9Lly5dRPJdEZZ49sxNsFbTsFEGExBdLZtm07T0DNBBv0uXLl2SWBJ9EBdNV+YUy19YBiYmb1vN6y6bXbp06TIhiyZvZ+JtOa7AiqaYXaDlg9qTt5OnhfSJ3C5dunQBysVYrTQzFpmyzMbQoDq5WyarxsnccGMqodv0u3Tp0mVKlrL8qTQFA69oEfdR9YkN1xa0g7lMuuQyOtPv0qVLlyUsX6SVpkDanHMbF80p005TqXCB6s0qJ4rvTL9Lly5HWzbO8u1iLGPPV5Y/twCgIROKYm7y1kpn+l26dDnastSW30pThLUMLgsmcFsyw+C5ctyqpTP9Ll26HF1ZheXPpZPELk228do6MmPjX6SHjHSm36VLl6MnOQFfwvKnytG0eWKaVxpLvIGyBbhTOzLMSWf6Xbp0OXrScJ0vZNWFWNWhwwyirziXUJ28rUS0iu2g36VLl6MlOUi2MHkF9l1HYvG2mbDlz5mXlph1GvvutJrfzTtdunQ5WpKD/aKtFJYUnGkBuzK3BfhTNpkVtuXJi5gqtjP9Ll26HB3Z1MStA3QuEy+ZuF283UN90mENQxKAzvS7dOlylCTfQXMqDSbSNAvMJ25zb54F9Rd1U5F8VY8dK53pd+nS5WjIpiZuq2mmjPIVOF5xU7elJv8lVqjO9Lt06XI0ZFXb/Tp0Omf5eQa3yKrRoJl2LmnW1ECiM/0uXbocDVllK4VFi7AWboRvxWWpKASTbq45U85HU0sPOuh36dKly5xMbrVQSTPlntnIvsSk09JblSVhTenmnS5durz6snGWP8HS5+pfOLG7yuRtLR03LqQz/S5dunSZkrmtFor4FTfaqUzcHmQJAU8afjrod+nS5VWXjbL8mYpWscnkaRasvp1rHsX/p9J10O/SpcvRlSWbodkDzhI6Mr3iPvkNJJ8CeNEN7SUG8/tEd9Dv0qXLqykbY/CxAM4Kdbi6BsufmQsurEbTWYtcfe+dLl26dLGyCsufXIS1BuAv2Fdnbs53bpK3JZ3pd+nS5dWTxYC+IP8cJZ/NX5EF9v2pS1hnJa5IZ/pdunR59aSyB9psWpE5s80Ss06rbDDcB85NkTowYE1ZL2KqOSas77LZpUuXoyEb9daZSbDyKGJGScwUUwPzVRZmAZ3pd+nS5VWVA+2dE7n3HMufKr/F8lfIsuq2yc2qjXSm36VLl1dDVvXWmUzD8xR6FbMOxf8OwPLnqrT5aCJ1B/0uXbq8GjLlwL4EsFdaSDu9WVohzAn4F2RbohtyK9bSBVwd9Lt06fLyy5LNzKZAfU4prMLyq2VP78pZM+PMgfk86+/bMHTp0uUoyqqAPQv4q7J8+a/N8m3Y6uBeS9vO1Sdyu3Tp8urIOitvV5ohnVlR1SibMt691Kwzs4ZrrtqqdNDv0qXLyy2HabYpyp7ZYbOanJura+eKWiVfMgexO8+lm3e6dOnyashBzTa5HMSsY5BYOH5tK7RVJ29bTVxi1hHpTL9Lly4vr6zC8udkFaf4Je6hPJ/kIDLVRJ5I0UG/S5cuL78ceHJ2KjNN2/KL5KkwavydM9usvhArlDi/x2YH/S5durysMreL5UHLFZlSGFXkpoLll8lKxTBVZaWGpnQ//S5durx6sgrgH5Tlt05bdbNPWq+OsvNpaW2glk/Z8gJt15l+ly5dXl05qLfOqnZ+9pDOmDflLJH64q1U8ioDmw76Xbp0eblEaO+hm3VoIq6Sn9sNWLpFwlyzpvfkWXbxHfS7dOny8shh+eQfZDO1LP+62ybUpG3WWeJ/2jdc69Kly6sg6+ygufIIoMHyZ9wzl7DyNVrgzqc3Z0YzlUgH/S5durwc8qx88ht75TTrrQD+pvzy6+WsMtFQSjfvdOnS5eWWQzHrUBnPeUKeRfcle+e08tXOeRHgTzeqg36XLl1efFl3JvTAWyJPxdeXQuVbK6zb5HJOYDW7Vqv5HfS7dOnycsg6PvlTsra3Dq9e14pS8vlVJ27bY4xu0+/SpcuLLUvtI2ubdcp9KifLzdJs0pZfv9Sc489P3La8foAO+l26dHmRZd3J21VHAIvnRufh96Ay3ZQlDH/6crt5p0uXLi++HGgrhbm8xvJOMyyf0lbJuWyC5dfs+Kvu0pNgv96iDvpdunR5MWXp5O2BvHUm/GuKehlgqhqBDsOsQ8uHH5omKI7p1nTzTpcuXV5cWXWrhZVHAAbCZ3GVlI0/Wzv+MpPO0tZ0pt+lS5cXT6ZmIq0cyKxj47gdl2U/DDt+o8qVpOyy7r3TpUuXl13WZflTi7AWjA6spekwWL4vZ+mmQL4lS6eYO9Pv0qXLiyer+uQfZGK3ma8NxQepYlkD2nMNZehqGw11pt+lS5cXR1qTtxv11jERk/hILvumzTrlpS6bsfbbKK++D08H/S5durwYchhbLaw9Oig3XJtt1tJ5iGqZc+CdoJ4XAf4au2wyH+Ia4y5dunTp8lyk2/S7dOnS5QhJB/0uXbp0OULSQb9Lly5djpB00O/SpUuXIyQd9Lt06dLlCMn/H96RDfDPm907AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start_time = time.time()\n", "\n", "Index = 1.5\n", "\n", "R = np.zeros((z_pts,y_pts))\n", "G = np.zeros((z_pts,y_pts))\n", "B = np.zeros((z_pts,y_pts))\n", "\n", "Disp = 0.1\n", "\n", "NR = np.zeros((z_pts,y_pts))# refractive index\n", "NR += (Index-Disp-1)*Prism # n-1 red \n", "NG = np.zeros((z_pts,y_pts))# refractive index\n", "NG += (Index-1)*Prism # n-1 green \n", "NB = np.zeros((z_pts,y_pts))# refractive index\n", "NB += (Index+Disp-1)*Prism # n-1 blue\n", "\n", "BeamSize = 8\n", "BAngle = 20*np.pi/180\n", "BeamOffset = -20\n", "\n", "E0 = GBeam(Z[0,:],Y[0,:],0,BeamOffset,BeamSize,BAngle)\n", "\n", "b = fftshift(fft(E0))\n", "for jj in range (0,z_pts): # propagat\n", " c = ifft(fftshift(b)) * np.exp(2.0j*np.pi*NR[jj,:]*dz)\n", " b = fftshift(fft(c)) * np.exp(1.0j*kz*dz)\n", " R[jj,:] += 0.2*(abs(c)*abs(c))**0.5\n", "b = fftshift(fft(E0))\n", "for jj in range (0,z_pts): # propagat\n", " c = ifft(fftshift(b)) * np.exp(2.0j*np.pi*NG[jj,:]*dz)\n", " b = fftshift(fft(c)) * np.exp(1.0j*kz*dz)\n", " G[jj,:] += 0.2*(abs(c)*abs(c))**0.5\n", "b = fftshift(fft(E0))\n", "for jj in range (0,z_pts): # propagat\n", " c = ifft(fftshift(b)) * np.exp(2.0j*np.pi*NB[jj,:]*dz)\n", " b = fftshift(fft(c)) * np.exp(1.0j*kz*dz)\n", " B[jj,:] += 0.2*(abs(c)*abs(c))**0.5\n", "\n", "fig, (ax1) = plt.subplots(1,1,figsize=(8, 8),dpi=60)\n", "\n", "\n", "R+=0.2*(Index-1)*Prism # add prism to final image\n", "G+=0.2*(Index-1)*Prism\n", "B+=0.25*(Index-1)*Prism\n", "\n", "br=2.0 \n", "bg=2.0 \n", "bb=2.0 \n", "\n", "R=np.clip(br*R,0.0,1.0)\n", "G=np.clip(bg*G,0.0,1.0)\n", "B=np.clip(bb*B,0.0,1.0)\n", "RGB=np.dstack((np.flipud(R.T), np.flipud(G.T), np.flipud(B.T))) # use transpose to swap image axes, flipud to origin at bottom left\n", "\n", "ax1.imshow(RGB)\n", "\n", "ax1.text(25,100,r'$n_{\\rm R} =$ %.2f' %(Index-Disp),color='white',fontsize = 36)\n", "ax1.text(20,220,r'$n_{\\rm G} =$ %.2f' %(Index),color='white',fontsize = 36)\n", "ax1.text(25,340,r'$n_{\\rm B} =$ %.2f' %(Index+Disp),color='white',fontsize = 36)\n", "\n", "\n", "print(\"--- %s seconds ---\" % (time.time() - start_time))\n", "\n", "ax1.set_axis_off()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 4 }