{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Refraction: prism\n", "\n", "In this section, we explore refraction using a prism rather than a lens \n", "refraction by a lens, LensRefraction.ipynb. Note that, as previously, the propagation code is paraxial so we can expect significant errors\n", "when the angle between the propagation direction and the surface normal is greater than about 30 degrees.\n", "\n", "In terms of physics, refraction by a prism is simpler because there is only one angle of incidence.\n", "\n", "In terms of the core of the code, they are the same.\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we present the code.\n", "\n", "The Jupyter Notebook is PrismRefraction.ipynb see\n", "\n", "https://github.com/opticsf2f/Opticsf2f_CodeBook\n", "\n", "
CLICK HERE TO ACTIVATE CODE CELLS
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import time\n", "from numpy.fft import fft, ifft, fftshift" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This cell defines a few functions. We shall use Line for rays and Triangle for a prism." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def Rectangle(x,y,x0,y0,a,b,rotation):\n", " xa = (x-x0)*np.cos(rotation) + (y-y0)*np.sin(rotation)\n", " ya = (y-y0)*np.cos(rotation) - (x-x0)*np.sin(rotation)\n", " return (xa > (-a/2)) & (xa < (a/2)) & (ya > (-b/2)) & (ya < (b/2))\n", "\n", "def Line(x,y,x1,y1,x2,y2,a):\n", " x0 = x1\n", " y0 = y1\n", " b = np.sqrt((x1-x2)**2 + (y1-y2)**2) # length of line\n", " rotation = -np.arctan((x2-x1)/(y2-y1))\n", " xa = (x-x0)*np.cos(rotation) + (y-y0)*np.sin(rotation)\n", " ya = (y-y0)*np.cos(rotation) - (x-x0)*np.sin(rotation)\n", " return (xa > (-a/2)) & (xa < (a/2)) & (ya > (0)) & (ya < (b))\n", "\n", "def GBeam(zb,yb,z0,y0,beamsize,angle):\n", " angle = angle\n", " za = (zb-z0)*np.cos(angle) + (yb-y0)*np.sin(angle)\n", " ya = (yb-y0)*np.cos(angle) - (zb-z0)*np.sin(angle)\n", " zR = np.pi*beamsize**2\n", " q = za-1.j*zR\n", " return (-1.j*zR*np.exp(2*np.pi*1.j*(za+ya*ya/(2*q)))/q) \n", "\n", "def Ray(zb,yb,z0,y0,beamsize,angle):\n", " angle = angle\n", " za = (zb-z0)*np.cos(angle) + (yb-y0)*np.sin(angle)\n", " ya = (yb-y0)*np.cos(angle) - (zb-z0)*np.sin(angle)\n", " return (np.exp(2*np.pi*1.j*za-(ya/beamsize)**2))\n", "\n", "def Triangle(x,y,x0,y0,size,angle):\n", " return ((-y-y0 + size/(2*np.cos(angle/2))-np.tan(angle)*(x-x0) > (0)) \n", " & (-y-y0 + size/(2*np.cos(angle/2))+np.tan(angle)*(x-x0) > (0)) \n", " & (-y-y0 + size/(2*np.cos(angle/2)) < (size*np.cos(angle/2))))\n", "\n", "def Circle(x,y,x0,y0,r):\n", " xa = x-x0\n", " ya = y-y0\n", " return (xa*xa + ya*ya < (r*r)) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we define a grid in units of the wavelength. $dy$ and $dz$ are the spatial resolution. \n", "$\\lambda/50$ for the values given below." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "zmin = 0 # z is the horizontal axis so like x in cartesian system\n", "zmax = 20\n", "ymin = -8 # vertical axis coould be x or y, call it y to agree with standard axes\n", "ymax = 12\n", "dz = 0.02\n", "dy = 0.02\n", "zoom = 1\n", "Z, Y = np.mgrid[zmin/zoom:zmax/zoom:dz/zoom,ymin/zoom:ymax/zoom:dy/zoom]\n", "z_pts, y_pts = np.shape(Z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the $k$-space grid." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "kymax=1.0*np.pi/dy \n", "dky=2*kymax/y_pts\n", "ky=np.arange(-kymax,kymax,dky) # fourier axis scaling\n", "ky2=ky*ky\n", "ky2c=ky2.astype('complex') #Notes on complex types http://www.scipy.org/NegativeSquareRoot\n", "k=2.0*np.pi # k=2pi/lambda with lambda_0=1\n", "k2=k*k\n", "kz=np.sqrt(k2-ky2c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the propagation phase the appear in the hedgehog equation." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "ph=1.0j*kz*dz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define triangle that will become our prism" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "PSize = 18\n", "PAngle = 60*np.pi/180\n", "PCentre = PSize/(2*np.cos(PAngle/2))\n", "PWidth = PSize*np.sin(PAngle/2)\n", "Prism = Triangle(Z,Y,zmax/2,0,PSize,PAngle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This cell defines the parameter of the plot. The refractive index of the prism. The input beam size and propagation\n", "angle." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "Index = 1.5\n", "\n", "BeamSize = 3\n", "BAngle = 20*np.pi/180\n", "BeamOffset = 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The next cell creates the image. The first few lines initialise the RGB grid, then we add the prism \n", "and a gaussian beam in the input plane. The hedgehog equation propagation propagates the field\n", "Next we add the result, either the electric field or the intensity into the RGB channels.\n", "\n", "The rest of the code is to add rays. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASEAAAEhCAYAAAAwHRYbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAk6AAAJOgHwZJJKAADtOElEQVR4nOz9d7QkyXneCf8is3zV9e29d9MzbcZPj8EYEJYgADqQopNEoyOtSH17tNrV7ne+I60ot+7sSqIBAVJaUiJBEABBuIGZwWCA6Z723ntz+96+3pevjO+PrKiMzIysqtvdMxgQHTiNns7IMBkZ8eTzPu8bUUJKKXmQHqQH6UH6ISXrh92BB+lBepB+vNMDEHqQHqQH6YeaHoDQg/QgPUg/1PQAhB6kB+lB+qGmByD0ID1ID9IPNcWiMoQQ72Y/fmRTs1EyuR3bGdUH7sr5JX1Mf/TGThDV66i50u4zmsr/sMfH5Ix/wITuIgntz3xTs0kgW+Q/SOb0oz9m5tlkeq75POvdfgTf7RTJhB6kcJrPC2wFNg/S/U33a0yjecm7kcKtSy3nbpK8h7LvVnoAQm2kdl/iA3D525HU+3533mcQJsyt30tf3utA9ACE2khRL/Gdm6T3qgY8SM1TNMzo7/rdY0WmGXY3rUeXeS/PnAcg1GZ6519iq2/Ve3kavdupuRTdPpNpvdB/NIFI1fejkR4I0/c9iSZ/mt3fLP3oTKj7ldoX/6PvuBcd5YeT7lVK1su/lw0wf3oAQvcltbtk5jsxfvT9Zc1H5V5hxnzH/Jai+Q7JOzP6rT9L97PFHw0gegBCd53m66iPmtLB6f5OTf93P5nk1tZ3vhvpvTO2dxvqEV0m+GzvfSB6AELzTvOdNvMBlHdmcbRjFLZTvvkd95reuRbe+8swmNqbB3f7Pt9r6QEIzSvNl/XcH1CZj8L0TiZzm7ov6d3iO/cjDE8G/n53UhRPmU/vTfJ181be2+nH3Ds234D/d//l/m340r130zv9Pu9lQ8l7Pbrn/qUfcyb07ukvd8Nk7tcUlBH/HW7t/ppV8x/V9/Kiu1cvXOtxub8m54+OtvhjDkLvXLpfzvmodDff1eYAZPrvu2vrfqT5txld4t77H200zc+cCgNR++rP3970AITuU3on9BrZ5M87m965SX//vvbNR+H+KT6tFZj2cu5G/TGn9z63mV/6MdeE7j7d61T6UZ1I7cXwvjNxxnfD/tpN96LeBOuRoSvm3Pup+vyozid4wITmne6G6bw7TOZeuNj8ejQfRjL/duejKd2fEW3OddrzxLUft+O/uz29ztyrHx3Vp3l6wIRovmSDL7idr9d7Y1LMl428M96Y956PR/Xmbt5S8zEN5773nv69mH6sQWg+4NNu3v1LUb2Lav1+9Kq5uPvDNCzuX8RV61z1NO22aWJS84X/H+f0Yw1C6uW/MwqGnuYLKM0Wyzvf23bT3QLRfMrdvydtHyruhe+Yy7433te7meajsT3QhHg3NJpm95jSu8PD7m9UUHTOu7kEW4/6ux1vbnr6u9nG814FsnsfywcgdN/T/ZrkJsnx/gNQ6wVrbl3lxGybVDJ5j715t7ZQmCXo+y2tN78rXKL5bJmv9Hw3c685dLeeH+2ZuVHpAQi1lYKep2Z/2k3tTq7mPpD7FZ/UPAzPzGoE0N3dRV9fL5Z1r1NpvlAQfuL2I3pa5/pTaw9Zaxg1v8P7y8nuJhapvVFqXePdP8kDEGqa5rO05+Mwfedk1vsLRNG5EkgmEmQzGeLxONls1nDvO2X2vDc9TncDo++91G6v7l/vH4BQI90tq4kym+YX7zzfVoOeqncWfPygIgEhoKenC8sSCKCrq5tYLHaPPYluufld7ZZrL8q6+R2tZed2wOhuR6m9eWJmXPf6Zu6FDTUr+2MMQs0ApxWI3L8wMVPr74xpFW1WmcsEr/rvyGWzJFOeFmTbNl3d3S1rjE53N4Fb1diuPK6bU3fzVt+NwMF7GYe7qaM9oLt3ePsxBSHToL278af3+uqCUme09Dk/pcSc/IBtWRadnZ2IQF3pTJZEGyJ1O8pIe1/d+8G67raO+zdP7ram+w/bP5z0YwpC95/RqNSOZH2/psj8em02q0x3+WsPg1hnZxfxeIzg2Akh6OruQQjLV8f9E4ijykc/j7+Fd+8j47V8/wH2nTerwvdHl7n38fwxBaH7n9r5Lqt77udSaK+u5hAYBTfh2gWxWIxcR65xt7+MIJlKkUqnQ71qvhzNQvbdKHRRLfiT/lzm0YtWftp9e/fDCLobAGuv5vtbx73N5gcg1CS1YjT6fe0kk9kUxcXm65CfH6eLZg+tvsFd3T3Ylt2413xPN5bt3dMeE/rhmxDtCdPtpPafxWw63w3s3u0o//CDIB+AkCG1mgImGbtVuj8RQe1cu9vWm/XITYlkknQm07JULB4nm835rs3XJJsfNN0vfejuQgPvr+F0PzS8eyl3L+nu5tkDEAqkdl6daaibAUj0q7nbL15Y34lO7U+MZjxLCEFXTzdCtNffrq5OEvF4qKdeadNzhM0xc07wDn+KFulb57ab2n9z96KIzZe33D8w1tuKBubmoZnt3fkAhOad5stomptVUf9uNzXXUsI9an5XMMcz2CSZXK6J50sGWnE9aN1dnVhNWwo+R/N0Lx+I+bbVbvphGpPNP27t3nu/2rz7Fn6sQKidpf7ORgWpXui9aZfVNBdSg7WHa5vf90zvlWXbRpd8qx5kMhlSqWQTPS366r2m1u+rHeFcz7lXk/HuywRTOyEO7Zd9Z1M76+bHCoTuv4O2Xelav/9u8lQyAVH00m7dIz/fiSrb2dmJHYuFWg73wA+BQkB3dweW0YRrT/u4V0BqhwVFA/c7w2/uFYjudqTuZu63Z7zO11jzpx8rELq/6W4A5e4ie8KMxvR3dFmvfHMYNuUm4nE6cjlEI08E7jGpLt4ySyUTZLPpiBbnx5HacZs3B9y7Ta1h414MavP7bd6T+aT7UeM7YYap9ACE7iqZ9Jx2p2EUeDR31jYHotY9bcWXTDVZQHd3J5ZlBZa4+ltGAoVXn6CrK0vMtkLX7z7dC4cwc53W4PXOMDV/mo+c26rs/bjz7u6fb3oAQo00X9NKpXshuUG1Kdp4uJsvbTQbMt3l74kAUqkkmUDgockQFEgNxkQDsNSVWCxGR0fWAED6EzVnM9Hg5S+nP6u/zN3CzN2m+1VbK4bn3RP17/n1pN35HD2m82WjD0AImL9pFTRcWkvXZjYTbUoFy0WDiX8JNdNsmrMhyweFliXqeo53r2k5iNA4+O9Vf+c6siQS8XkzofAomZ+mPZBuPhLm+5t/mN4ZltCeehnuc/QH7d1K8x1heABCbaRmLzNqskR/g6PBqL1J13qxtBKPo8r5zbJsNkMymQiUVfWbgMh8VZWxLYvOrs56nFEUm5GRHNRsDjZ/mnBOuGww5/6yofub3vm+zYcF3b/0AITuS2ruyJ+voddqKkR/ZfxmlcnwCrcQBiE7ZtPVlYvggK0BSNYNtGBPM5k06XSaZiMQDUDBvvp71N4XOAxA5py7S8158P1P7YjF0WPZPEXP0/kaW63TAxACzEvWbAi0CyQY8ufz1W2fH5l6Fy47Hw7R2dFBzLZRcOL1yYOccN3mnvrvE3R0diHqe8+83vhZUDgn/Hztc532ck1/h++ITu0Z1uZy90esb94Tc/KD+f3sRev2vPQAhHypOZtRf7cLJlHToR2TSi/f2sWq/3FjlE1lzUzIX0cikazvkm/WT/W334wKCthh3xkkkymyOW8XfvDu1hwp2thq/WFoDS/zXYDNx+huUzRg6X/fXS3z78V86mkO9+b0AITmke52ws6fzajNDuC0XUd4KUb7wVRugKcIm86ubi24MAzKQXDRW9NLNRudbEcnth0L3d0cTNoHoejc6PTOff1VCr/B1uwpupb5+L/mA5TtAcj9Hc8fWxBq/+vZup5mSZ80zU0sE9fyg0lrg8dfXm/LDG/+3iTTaVKZdP1KmJmYdJ5g783J/+R2LE62q8tXs7/nwaczva37BxvzeyJ/j6LLmU0dc23Na2ye7qUX0XDfvPbw3ffyNn4sQcg0YO1MgXvVZ1oLl6ZvugiVbc51/HeYemUCIsuy6ejuMZQzf8F1QAqHOoaZUrBHad+GWIml9Ws+XOd+MKjwszW7491gTXpv2rk6XwC7X4AXHs+7ST+WIKSndgcuio3MxxfWmg1F1WHO8Xpg4jwegAWveiDklUvlctjxeOMulR8Eu2ZsyH+n/6oI9lNYLhsSzZ84miP5W3t3gMHcXrtt31+u07rGexmT1kzv/qW/FSB0ty93vikIImFgCpoLzb/R/pqDyV+XiQl5GyGCylE0i7K0P4oNxeIxcl2dxnb0v9vre7BND8iEr4QgmU6TzmTbHKXWbKY5eLVmNM09VeEcVWtrY6sVh456CvMdzeuZT2rvDd9tb9pNfytASKX5sprgf5trNHOP9nrSumzrWqOZkJ9jOYZyfr4TZEMKiLIdHQjLbixcPxCFF1JrI8FrW0Gh/rf6L4mgo7Oz8eutwdFqhwVFsycIl/HuaG/Jh9tsHyyj+zkf7tI+MM8HUEz3vztc0pT+VoHQfJJpIZk9DtFA1L7Oo9cTrjW6xuglEmY00WaZCfhU2VQqSTaXDdwbhIGoaGi9bf9T+FMwssjTleKJBJ0dHS0WaNRCidKrmuk6ZmHZ/D7NzMuUZNPc5mXbSa153P0td39Tcyj9WwFC7QnG4YFoT5sJ/t3sJUapPs2/t95LiCrrB69gWT8IhWuPgidbCLo6Oxo/0aMvJI85hcEj+C9Vn/6vsBtf14X0UoKOjizxmE0wNec6d89KWnGs+fCPdkXi5jOoPdbVavapcsF72yvXqkaV7j+I/a0AIWiXlaj/ng8YNWdE5tpa9SFcmwcDzeVrGSgTBiK9Lc/f5BCGqGwmRTqd8pULc5bgMwWBOZr3+FUgbzNH8Ipt2/TUt4n481U7pokvQ2NoLhcGIv+YBZ+yeTkzXKgUXPrR5dpdyq2Bdj613Wt6Z9r5WwNC7aW7mQbt1eqfKM3BJIrNhIHI30JQndHLhtmQXruFAz4gitkW3d3ZECj4e4jvavCK99xeaZMeE9U/fY9ZJpsknYqH7oqGGVMcUxCEglDjL0egrLm9cC6B3HA589y6G45kurPV1XuZ5ffKmvTUnoXyIwlCdztM8yWn7ak+Yc7Rflm9jnD5YCthTxdaWT+ABXNsgkDUkUsRj1noYrFbQxQAySbczG98SXSA0a+aIUEisISgqyuNCtZubnB5ucEJ7PXRDECtGU3wbfgZDZhrbQZC0U+g3xFO7cGaOc1/lbQLGe2Vm09tP4IgpNL9wOzw19pcY2vlSF/y0UAUzVf87ZvKuTUHGU2471FA5IFQIhGjozMVyXD8Rp3/wDIPZIJtS189UUCkatf1J/XvVCpONptssbAl4ISCG/1PHrV8/aZYsGyrZT8/nhNdPrrW+8lDmvWk/fuigbIdGG0v/QiD0HxTe9jsnwb6QJt5gGkKhTUafwn9qgmMolvwi8wmIDKDl8eGJNDRmcG2LOMzKZ5g+uqrfD+A+CGHwFX/k0ZtdKXRZkdnGmHpbTQ3qUzsiiYQFX5HJmNZf3ozezJznfaZkLlsOOdu0vzL3Rubad5ea2D9WwBC7Xxx2gcg9Xe016l5+fCUMkNFkM0Ey7u5+pIJMxqT+hPNotw/qXSKbMYVo80sQi/p92jpGo6ZG/nv04FI+O71lndwtOLxGB2dOY2z6GDiwa+fdQafIXphR20NaYdBmdhTu6ZYezDTLnsK1mzObS/djRlmLnO3oPm3AIT8SUT8d7v6TjSQtPe1aM1o3OXjGhXNzCq9dlXOBmwkIrT91A+cQYhy2xQi5p7nI7xtGcHWo9mLuhJUd4JwI7WSwZFrNuG95ZzNZbBjcYiAmmCMlAjVEI6i0nsebY7p988HTIjIiX5evyHTmi00T/6naH5VzwlfnV8v2nm+1uk9DULmQZk/q5lP+WggCt/Vqifhaex3qpuAyCsXzWZ0syyY60bbmJQji3Sug2QqFfkUUYCqgMgDFY/76EzIFB1E6Eqw5+Fntm2bru7e+tMEocIJAYnKCZtwd8NmWpt/BHLNM+ZuVKbgeIRTK6YXlcLqzb2AXvOezJdbvadBSKX5Dpc+zGZm0f4wmVmJ90df7kHYCNfkB5Ng+F64z6YcF2p0NgThmqGm9UxgxeJkOru0ngU1HLcW72o0sATZUFATCgIVPgiLnrA6F0tmsiTSWcLqjTTER+m1+wMe/M8bBU/6+EaDl6msv41gahe8gnWYDNUonhP+1M0fXkzHzwXbvJua2yvzHgCh9jrqv8PMHaLKmIHI/xKbmVWtvmA6kISBKBpIgiDWvGa0sh7UmGr12JAHRKmODqxYPNA3xUzUf3mgIQxX3R6Fr5gML+/JReP/9fFoJnADCCFIdfWAsEP3mEwxf3utRelg78PlhK/c3YBXMNefoycRymnNhEx3RUsG7TCoYG7r3rSbmq/x9wAIqXSvD2qurXmtfmhqrhrpZcJgYDKrmpf3prYJTNwX42h/wmX1/urmmFKOFAjZiQTxXIe2pCDIhMCbqEFYiuJH0cAZ1o28Nv1j4a/DX7OdTBLPdfjq0cfHDDPNFZ/5g8ndwsx8PGp68pcN5vjLhnOjgaR1uejUGrja72c4vWsg1F53WtfhpWglJcrEie5Vc0YTXS4aiKJrDpYNqyS6+mMGIlXOX1aBUAy/NpTq6qwfLu+NggjUoJtjZnbiZ0PBqR423YJP3ErgDtbj5iY6uxC23cj3K2NeO342EzbUTK3puVHldPPPzGaiIao5eEG4N9Hlmms6zWer2fQLt926xvDzRaf2V/t7gAk1V1LUVfPXJJjbPIW/ROpvPxg0N/aCL9Kbos21HRMQueVNIKQYjVl18hZNEPhs/GwomUmRSGe0paju9fokGlf8XET1PWrPl9+wDbIq/3vRa9Z5UdiN7wc9EYuR6OxEBwQTKLgQHc11hCFHNso1A5JWYBKd034YgUCfI6YavVrRcqJBL7pc+yvI/Hzh1RC9ApvnqvSug1BruIi+ozXympZDO2WigSjcpgyU06e3lwtBrmOSr8MLRq/RJsiGWoOQXjYmBB1dXY0fHDSzHP3JWovO3hiF+616otcqG/8fpS2ZzD/HV3Mil8OOxxBapLRZ14mWrJuL2VEQFa0jOY1cc2+C4OWNhT5iJvC6W9CbD4Nqr9ZwP1uv3lYsz5TeARBq3dnWj+Km9sEk3LbJJGteJhrEwrWaGI2fCYXNBt2s0qHKX1YHEWVaiYbIHL5LYgX8YF75zo4siUQitNi9CRul94Tvaw7NOqPySvoZDqG2nPofPxdzNL9hvTXLItfdGYr+UfwhDAh6T9wxb85KTNDmPX+wvWg2Exy3ZiN1NwBEWznmuR7Vm/bXY1SNrddW8/QeMMf0JAJ/m+9oB61NANa6XBhM/F9CSXAaRk1E9S8FJh4Qmcwqs7tdN63MupCbWyMMUYmYRWdHWvsiBk0fk1u92X1hjhDkhITqoHE1aGYpfiLrkOONm0mHEqTSaTKZVBPlxgRCXm9M4OUvF3wSD7zMcAFhSNTbbGX+NTcbTWXbAb1gYAJNy5lXQOv2wm2YazXnBtNdgVB7+Nb8juYw4/0dZDSta/QDkYnVhIFE5fjNKr229oAobGw113e8mmUEEHnOfN2k0+EthlNnQ4oRCaCrK0k8pvfY66PqqWIcJoPIS35Tyv/tDEKBqsP/TVfQHm3oma742RnCore7g7glGm9JterXg4Ig5DTJmR946U8aBqHgeDUDr+jc6CWvyrWvealaw+3po9cMZjCU89oL5prLtk73xITmA0TNgcQMFfOv1Y/cJkZjLmsaaC/5J7EOBuE6grCkA4nfLEO7I3zUhsq1G3XIQK7uC4tRxQOhRNIil7G1PppF5zA78d/nHzMTyARHLxrMdL1H3alMsmggwteveDxGZzbhe1t+EFKjpXI9NhPMaW6KubWKyBwM3Mpb2Aq8gv00Mzb/HdE5+kg3By+9N14yQ02wDMZcWuaGU3S5YPqhmGPtdS96wPxl2zO89PLegok2rYKmhlnfCZtWphr9IBbeTqEWkINoAIneGw/AggwqVv8Tx8GmWs/t7kpgWaaJbFrsTuie8FdWEn4TwfwwaHhX9baCwGgFSvo/H/56BF1dceK29wbdN6GPUnjZR5liZo9adDm9VjPz8p7BpDD5TbFwmyZAaG020iQnCF4EcsLMS/jKEbhqLhfsb/QKN1ORFiDUHOtMzbR7R3ME9edG8Z3wHeFhiWImbm6zvezRppEVKutvNxpmgu3qMOMXmR1j2aCwbeEBUYwakMrESaXUYWV+huM0roThQj1H2ERSIxFmS96TRwnc/pqDCpA+nYPszK9VeVdsW9DVaTeWrquF6W/G0mp3sHBCOd4bCM8IL9dfTu9zdDiA3/xrDV7+5WcqB/rC1uHGnNv68ysir4YByFwO4xVTm7S8C9pmQq1BwVymdTdbg5EfEMJlowy96IHzlw3yFvdvk7HmnzrRnMe8fdRUVuV4ZpWJDXllm5tkWDG6ujMI4S3maBOpmfqjT9QoUdrkU/MzGOXnUl97MzSZlSJzv90/uQ6LRFJoYK1L+HpPa5GmmGdSRYFXMz0oOBtEqNaoss1MMX2eESonAuX092gGEnO5cK55Hd4NrLVXNpjeAXMs2jyKgguvXGt4Mz98lFnlrzEIJn5WEmY1TqBs+BsWBCCP0bR/5o/HhCCGrJtVJqhxvWRBX5jHhjo7u4jHY/gZhRohbyH7Tc2gkaYnD3L0kdDr8upwGsaoWesxsRyzEO4ZcSbTDvco2O44UuimmFkPis5RY2fmOkHw0mEmupxie81gxsyC7t78i17yYZhpXc6/Cs13tEcvgil69c8DhObfbLOc6KEJs5KoGs2Lunnb0YxG75X7ooO8A18uhGHGg4sgVOBr19SmZ1YF2ZBudFm+jaleu1YsSbq+z8pTWoJmlOWbQiYG43GfMFB59YTZkhW46geiYEm9XwTuAb0/UUCVTMVIpuN1EFIbVfysRBhASL1TP4MKQlT09pD5gFfrcqZPhAkUgp/OIPC1Ai89R2+zXTYTBi8MObJpbjRGzJMJRXe1dbnmYOSmKKPLtFSCQ2RmM8Gve7BccNJ7Ly18eJhexj9w+iSJoes7tUBZb3IGYcaDGlkHMUcrY2u5UIEGX3LLJ7t7EXasMY5+WdhsagWvNFOI0OrwwgmFdo8nOnttKV7gd9Oj9ct7P/o96qrQ+qXDqZvf2d2BZcW10QmbVNF6kM4v/blB8PKeXV/Y5rOOovhKNCsxl9PfW9Ss9d5RM0ajfzbDoNC8XBC8/GZj+Pmiam2e7ps5Fg0m/s5EkbLmXW4Hp00A5jGaKLPMDGDelDBF9nivVBpyPDAJmmT6tPcUDSeQ64KYHgWtaozX/7jwVq3/kYhkEiuTacCJt5g9KdoPKe6E0p9dByr/JNf5jL8OvWar0R71WqMUIP+WjDC595t/QY6gA1U8Hied68IDIFWPyxb1zbyWlmPWg7xFFgQvP7sQkeVEoFYzK4mutTl4mYDEfMBbdLng2zHDhR+E1H/715cI/I3vDnNu1BpvAUImMDEv+dZlw3BhxvZo3tKMDUWXDQcC+nNVORMIuWxI5yzBO6Jhxs9oVDnvCyshUv2JoXQlqZWLAwkgjsaGhMTq6UEKWwMhk9kTpdGEv6vNIEfBiCc6e+BiaSXxtadPfjCDjD8/2vzzM69UVw8ilsJb+p7BFSVXNxezHawm5aJlZ7c/QR1J5ZphxoP++etBYVZiLhed25wFRUFbK+bVHBJNqU0mZEI2813Rd7QHNX5A8Oe2Z1YFDSc/gDUHQJX0aWgbReYwCJmAyA5xHV3focFoaoGaPXNOr1WxoQRg1ZmQlUlBMhWxUPUrppHVgSrIlNyvn1WHQ8/UCitA/iv6fWaA8QNj8K2FdaoweGoGoWVhd3ajZHsPSGoRShHUULCu7lB99BhUtK6jg5ffjGumI0VzHc/8M8OTCRDC4KX3JAwmYX7VDGaiV0c7pp9pRXlPYkp3YY6FG2kOPgRym4NJdHvNwcRjNHryXlGQDYVfTzB2xwMT3dtFINd/lGow1w4sc2/qu0qGA75YZ7Q7YkZxOoHHhoQliXd3EYaTIKehcUWNYRBy3NGLYkvh+/zbTIO6UNAcC2/dUG8ryJaa9UnVrAOjAESuA5JprdYaFlIT8z0Q8uKKosRsGQExrcRssyfOA69oQy0IXtFMKMy8WjMoM2RE56DlmFnQ/MGrOUZEgpC/gNn4Cl4Ns5Lo3GZ3NGND0SGCUWzIe/ntuc2ldtVfNghgfre5KZDQz2iCIJQAREPbCRpt7p4wv/zs14ZyXR3YsXhTOCF0xRt/k8lm2kZhNQEXNIDxe/0I9MDcntQWl9n8w9iWr19CQE83CAvFZhQABcXlViBk0oM8Ay/KUPOexAQi0cGN/h3+0eBlUorCIKS36QF7c/OvNejdKxPy98aU2mBCQTDQGzMDibmsv3z7ABYezCBEWU3L+tlQkEV5w+0RZ3+ux2jM20cVRAWBxCsbrFUHEj8bklq5OLK+J0zVrGqNAem4TS6XqT9xlHhrVnfce3T2glaPieH4WU6Yr+isCUOfwj2QoavBmk1moj66gavJJGRSuMaWH4R0IHENX5UTDm60kcacaDEbgnqQ2RQz5Srgawe8ohmUmQUFAcjrkX+2+HP9Oc25lfDlEMgJgvRdgpC5UPiqDOREl/P+BHlHc56kA5FlLBsNUX4gMkUyhzeXhmFKfef1qzGC+o7ZLFNxPyY25B49r4OQusPNrSCo4IeoGNDbncK21BP7z+UBnXV4o2liS2ajSmcn3tPrMKAzJvMbDbYXfPNBGBSNuy3f0+jwFrziB0aruwthu+XjmE0xL64omOuZVCpHLQ4PvExMSLEZvyiNr1YRKOe1GTT/9FqjTTE/eLVmUP7c9nSkcDn/WwiWbcaR7hKEogp4udFMyJ8bbXRFlWsFJlG1RjMa70vUzOjyu81lqGyTDRNYPpFZ+u6I8pKF2ZCuC8WBJA4xyoGaUynIpK3GVA4yE139CfOH8HgF7zFDQJhD6gCjt6v/y9wnAvVYvnENmmNun6xAn4IzQSBiMZK5NDaOjwmpetx3EGWKeQzKDpTz9CBTOcWgTPxIgVe01G0CL3MYgRm8TFzHD15B5nU3OhK+cmYTThhy3TuE4aqe2mRCzU2yYJnWjMb/TQzm+jWacLnw9AsOuclg8xiNDgY6M/HrOzJQ1q77MfxtKkbjsiGTy907aiMIM15Zb4n4ISoBJKkgGkAkBPT2gCWCikuQq4B/IXtKivcvD3K85KktLjtRdfnvM5lI/s+Sfxbob91k7AWZl86YdN4TfNogDGY7c2QS8Qi/F/WlqzMhL9dGRsBTUA8Kgpc5uNEMQjp4hTfJ6qZYdNRR9N42P/MKLn2/jmRqMwwm/lrbM//8uZaWa0otmVBrIGrFhkxl/V/l8NfZxIaE746oHDe3mQRtZjT+IELTUaruaw96rHQw8WtDwperjtrQjS7dpBMhFhUDkkCKGnFK9ZrTWUgmdFDQl7YCjiATCkq+QZbjF9RNpx2azj/0gMPPckzsDO0e8H7dQ4cTfz1OoJdq2ZkBTV2xLYuezhQqjloHkipoIx5Ui6oNEIo1nswDEj+D8i/7ZiAU3tuGVrMHbSKQ44GXidGYTTGPsUUbalEMqnkYQXPhPZpBeaZYMyYUi7gOgcaicwXScIfqjkSHC385U1nVYcdXVl+24E5cB6mVVrk26iWqV2I3yujmXJANxRrlJNWGvmPjh5oqtXrNeo8k3mYNx+hYjyOJU6Hm40o6k7JwqPnYkFoKVVw2VIGYpLsbLBH8eliNcgqG/JRbILDrQ28hsLDcK8QQxBDYwr0i6lcs4tgiRqxeSxybuLCJE8cRibopmSQpkiRJEBOSGklSIkWaDFJksYRDhgpZkaNDlEiLCkmSVEQnRdGNJXpB2HSIOH2ixkLh0CEK1KwYSbEASywlZS2iKlJkRIElVoZlIk2vNYOwBDOim25rGX3WEkpWloRVZZGYYJlYgpi4Q/+lm4yN5ilVZP2NCohUi2o+fmThcVNPzNZ5ksr1wMskgnvMS5Xzcq262RiGmCjw8nKDHMnPZkwGlznUMgwkplo9aV2f8xCEGVO5MHgFUyQIicB/e4AQRDsv15QTXdYDIR1I1N9WvZz0AYme6y5bndGoVmx0ENJrdyHKNTecEIDFUNOxVm83yJdiOFSo1nP1WtUUrRj3hEmgSpUKZWok8Ptn1J6wMEQJECliKZt1q9fw3PalLM+ViVlQsDsZt5Yyai0ib+eIW5IF1ixLrHF6rQlSVoWKlWPSXsS4tYgZqxvLsum2Cyy2xlhkTZCzi0grybTdx6i9lCmrm6qdoMOqsMieYYE9RtaawRIWRauXGWsBE1Y3RZEiZTn0Wnn6xCSdYpqYVaMiOpi0+pgUfeRFDtuSdIs5FljjdIopYlaJqkiTF31MWN1MksZB0CXK9DFLToyTZAaHGAXZwwS9TMgcRWKkZYUepuiVo2SZAimZkznG6GVcdjFLjJis0sMs3c4Y6coA5Ee4cf02b+47w5vHrjA3OEOtlAAZww8IVSxqDXgK6ki1xkfBZKiFwwHUzDObYk6jXaUHmcEraP55MNOMzUSfKhA2//zl9PkaNKnCzCsMXmYmZDLSgqkpE1LJo9imnDCjUY15Q2cy2DyYCZbVp4ds/Jf+KO4ilRoIqfZAAZEMsCEdrW0cnEhGU0FqrETV7EKU6zb3oMbWcpW73gl5ugCSSMo+NqSmihKoy1SQVACJiCfILVnK9qd28sqLj7JlSZpFYpysnAJZIe+kGXd6GJGdTDtJcKp0OTN0O2Pk5DC2U6DoJOh0eknWuknUMlQdSapmEa/NIByoVcqUnSozNZsxJ86IU6VQs0k6c4w7wyyoDZJzxnGcGlNOB0POAgadXmadJLZToscZY1FtgC5nBMspM1tLM+gsZMBZxJSTA6dKpzPKYuc2C50hkrLAnBNnyOmj31nKuOyh5gjScpIlzgCL5QAdcpaKIxiVXfTLZQzJhZSdJHE5x0J5h2Wynx45iZAOkzLLbbmUQbmEPDksWaZXDrNc9rOIMXKxFGs2b+Gp557lA7/4m1wYrvL6gfMcOXiekVuD1PIz4Cg24/eoqZnjGsn+N+wmFy50MTuoongg1DoyW8GTBwh+kUAHoWAsk9+dIrRaw+AVZVL5D7PVIcrTdUw5ZvNP76vZwNNTW+aY+u92GI0p1+tysGZ3CINsyIMZNKgwazQmRqNenQckQTZk41ClFmhXZyZ+EFK5cVyTrEoF2Zi0Ohsym2Tx+r+TVClTqd8R13KTQMWWpHq6WLfrBR57+UMs37ieOzdu8c2vf4v/ev0ICyo36GOCmHSYJsWgXMwgS8nTiZA1uhhjGQMskiOkqFIgxhALuc0ypmUfYJFikqUMsJQ7dFKiirvgb7OcURbhkCJGnoXcYRkD9DKDACbJMMBShlhChRyCMr2MsIwBFjJBHMkMCe6wmAGWUaQbpEMH4yzjNksYIUONIhZD9NHPLNMsAGwSTFNkgDIDdFGmBowxyx0Eo0gc0ljkgTGSjAMz2MAUZaZIM02GCgAVYuTpJE+GAqVqnhNf3sd//Zv9WAsWsfLh53jo2Q/w1Ec+yWy+xPkjRzj79ne5c/kwzOSJ1zymoEDE3SKs3n0QojwxW+dWiiOFPXE0coOxTCpFMyiVG70nzl8uGrz0Z/Q+9kEGpVZGq6BINcdNDCr6xyr11JIJ6WBi0n706qNgxn1QxWaCtfqBxLvq6TtOCEg8fA2CkBp25ZD3l1Xtx5B1MDF5u5RA7Zlkuh5Vq5tkHhuKaWXjQMUY9yNxXe5FypQauQkLOnNxdm5ey2MvfYC1u1/k5rTgtTeP8Vef/jOmBgbALtG30KGDUp0tSaqUqVKhSrUBepU6tNbq8OpywWp9jFzNyINl9Tbdt6Obn9L3XyoFPwQmZ3vYGeAPhVSl9LqC+9DUpPW3FxbUvV7oPdAldDsG6RzcmXCYGBjh+sAb/OD1k6S6l7B88yYef2YH/+if/EP6rBlun/4BZ/Z9jxtnrzI5UaBa15FcMVs31Px6UEz7GAV1pLAe5IGX2lYSNrZ08AofTzK/M5L8UBNtpEEzPcjEvGjUrHMdy1dOgVczAIJ5gpDXbRPfUWKxv6zXaX1S6bluXQ5hkTnMhlTyIMpdaF5ZnSy7d5gYjQsdNWpU65MoKEHbKIFaByGB6zav1GFIkqjXrHvJbGrUqGjtqknlutxrokI8ZbF59QJefH4nTz77GNJO8+aB8/yfv/v/4+yVccqFJMg0WHFEbzeSScDk+VLPpfvCvCv+ne3+RSp8JYP1hEHBnZrN7jGBgvJ8iVBdwV6CMPTJX5fe76DHLtgvgExOYM0JnHJ9/KtQHJ3gyujbXHn7Df4mV2Hbum4++NRm/s4vf5zezgTXrtzgB3tP8dbxq8wOz1IuJ0AG/W1VBNVIuTosZvsNtWA4gB+8dEDwG1wCJwReaLmtPHHRelA0RAVNKh2i/KRAh5qwgWeWdOahCXmNN9N3/N9BlTw8Dn9NTfpO0CRzjT2dlXhcyXWb10KMRg1ptfGV12t2DS6HSp03+L0iaup4XjJNKHb5C06diahcBUKu6CzrIKS762OIeJa+JQt5/qnNfOLFnaxeGOfa6eP8+af/gpNnbjE4XWbMgTIpoAeIQ64bEsnQgjdFSoXjbXRQ8J7fBELBD0TwXYSvBI/yMEOc6UqzLSB+EDL1IgyX/n4HxsASZLqyiFGBlEp9E+57ccoUpsc5e/wGQydO8Oqf2qxZ0c0jj23jfT/xPj76q/+Ac4Mlvv32OY4cvsRY/wi1whxI1/hRkdkKnsAzizwxO6gHhcVsldNcR3JrDoKXXw/SZ76fXwVFcPAg0R9XZAavaE+ciZeFdSSVY0qRIGTmOtShIhpqTN4uq1E2SNe9XKduNJj0nZqxrDfgTiDX/yp0kVn/Zrt0uqrlBtmQRQ1PZFY1K6iJ1/mQN1aKCSVxuZJDGewsqZ4+1u3YybOvPMPDG5cxc+scX/nGF7l6+CDl0WmsqltHHEgDRcpUKUKsA7o66wAdxV68sVSRxzpQheOJwuaPKdKZUHt68mrX30Y4XFJNfxOANn8aU7CimZ01NxEFkMpkiKcTlPPKL+mxGai45pSEUr7G5YtjnL/0A/7si/uILV7Eqh3PsW3Ph3j2E7/IxPQcZw4e4dyB7zN89RhydpqEY1KKlJitG2o0cqM8cR4gBPe26QyqlR4UZF4eCEWZf2bwcmtuP65IBy8zg4pKbTEhMLGhIJiob2GY0YAOUVFg4nqVzDATdLmrXPcRXCXEidR3/GW9chCnRqVe2uunZ1ZJnEascwI/1CSoUWqUVd8SCaQFJHIplm1+hEdf+Tjrdz3J5EyBQ997iy/90R8xcfssdnmEHiTdQKbebgooA3kcqpShMwdWrD5ywYUcZicm8PAWPHjL1sSEoq/4ASbMVcwghHalOcsxmYjNNoX47zHDafBJ7K4+KFbB8ZRGqGBTrX9SvKVbkzBbqjF+8w4Xbn6b1149Rqp3BSu3buWxPbv57f/xd+hyJrl14k3O7v0uty9cZXay6FaPErMV1/FmYZDNmMVsnUHpepBZzG6tB4U9ccr8a64HKRbk14P82pUIlPN6FAVeptSUCamkg0m0WeXmutMizGi8xzOVVWwozGiUqRMWmdUAuK+lVveq6ItC5VaoIY2Mxv0eKTakQ5TaNOEqP+YDNWS9rAMIAbmUxYpVC9j9/FM88uz7yccX8u395/nDf/3vGbwyQC1fAFmsj4JNuW7wUe9rAheIUkA5aVPLZRuWtfmbr8OuYkJRbKEZ5BAYG/eqCJUKmn/eFAvf52de4XvQ6tKjvdXV9lhO+IMWBmsLCYkk5DpguojHVyrEcHwgpHvFanWvmKxCYXiMi8NvcfGtN/hyh8PWDd186Okt/Ppv/DxdacmVC1fYu/ckb5++wfTIHFSUjqRL1jUUCOk6pK4HeVtogz4sV8zWy/kBwQqUAw8Qwh61MHgFOYsCzChfG74R9vc1OsLalJqCkAmIFKMhNCm93KBZpbqr+E6YRekis9/bpSaGWWT2gCjIhnQQ8kRmPVdA3VHuApjX5xhK+YFS3SHvZ0PKZZtAxB2WLu7kpSe38PJLj7FwUR+nz1zjzz/zGd46c4PhKZBOJ5DD+8IlcUhQdvkONWgEMCaAlADR1cGE0OVe97/NrMO9J7zxNLzgwwKwd4/0XQkuZh0C1EdDic46BDiBks3MKA/MTAqQ3u+g+RcFS8G21CEsAgkdnZB3oKreZ5k4kiRhEHLdCp7p3WAztTL5yQlOHL7E7aMH+HomxsZVvex6Yhsf+vgH+ORvrOPUrTle3XueI0evMD44iVMsNXQkQTXka1OfuPC2Ej+biQUYlAdPyqQyGVzu3rb2xewgEzLDk5lBeblR8GRKLUFIZwf618UDIpWsxt0ykGtp9fhFZpVL42EcHCPM+EVm/cuuggjtBggp9qQe0I3uCW4hVTZ7HEcLQBRajjrF0IUKdaBGDOwkmZ5utu/Yw8dfeZTHNi5g8tZZvvvqG5w6fIHB0TxTVShAvYY0CvA81ShFiSKlusGngDYOdGZizKXjTGijbnJPh71DZn9R8GMR5g7NxWQzowrvfvdfwViXKqnfE+5BMyake9kI9Ml/RWdCAgmxGHR1wtgMUMGiShLvA6DmqQIh/RxLP5txGZTtQHG2yoWzw5w7N0z1cz8guWQhq3Y9x849H+Z9n/p7DI3NcurgUc4feIuxGyepzk0Sd1pFZpt2vjU/I0kaOYvnidNhpl0xWyAjuJXJ/MNXNsrXZkpNNCELz6vk/zqF2ZCl5Sg5VPrKKr1EgQla3TpvcQIud4/rREUyq8eIUQsEIKpF7X7zHGohEFJ3eCCknsZCOdShTJWqqJLIZVi2eQePv/Q+dj26HTkzxok3v8ZffOb3yN++TbLkNLiSCzOQp6rxHdWrJJCmSp4CRUr1e20gbkGqE/KN8dYhIAwMZvHW5OoWgT/e+wwCmUkBUiwHrS6zgO0v6UFJsE9hfcncg2Dt/p6GTUT/8+ucDSRkMjAbg5KrB+kgpBaYy5PUDEjgLWzFVyqNHAVeVQlzxRo3r9/h+PWv87WvHyHTt4aV23ewe89uPvD+f0q6PMaNo9/lwr7XGLp0jeJ0iUrNq9VpfP7Cqk/ryOzoYIFoX5sOQnqtyvxzQrCm2jT/ei0Ezb8gPJlSExDy9qLrzegLIKzvqI7VGvqO/uB6bpjRgMnlroZGDWSt8TVStSt4c49DVWVVb9R3JU7QbW5rtbois2JSqj0ExJI2a1av4uHnP8L2Zz9IOd7BwQMn+b1//f8wdOU01fwgcTlFb/2rocoqAEvgUG3sgZd43pkMUKBImQIO6XpORwfUEsEFqI7WaLZIo5YtvivRwrSf06iDzfT2vLAAvxkVrivYAxN4ev3y+JOI7Hd75hi+Kx4T0kICLAu6cjBSIS6dhinm5zlq6eqmGCi4sDQxO+xrE0AcpyyZHRzh3OAbnPvu63ypS7BlUx8ffmYz/90//jU64iWunD3Pvr0nOHzmFjNjc8hKTKtV5yzuthKTXB29rcRviqkcHbw8NmMKFvADiRqfMHiFmVeUHqTTDj01ZULKn6WSmkSKLYTd5qozrl8pKojQ9aHpbEgHsBjBneqKpLpsSN+bhVbOE5l1P5hA35vlxgZ5ppHfJKtQxgHiccGKxTl2P7mNJ156H7lF69l3ZoA//8wfcf5MP8WpMjgSd7omqBKj5O5z95lVyfqfgrYnzOtvGshSIU+eIlkgF4fOTuphiSbTp9UiDDOTKBeDn9m2DgMMn9/jAZqov3c/O/PfE+53e3AZvtIc9NQ4+Rmc/zss0gni2TjJWXwgpAz2MuA0PiMKhFQUfJkYtUgdqdZgUJpJVStTGJ/i+P5z3Dj4Xb6aTbBtTR+PPbmNj//8R/n5nhWcuDbF1/ed58ixG0wMzeKUaiDLeGymVXBje3oQeEASvTFXaVDhcACzKebnScr8C+pByhYIphYg5MGF6ohqzg9CasGocq4UHBX347IhfV+XDjXVOqPxDDqd0VSQlI3bIpTLvUwVb1e/gpkkUMKh7Dss1eMtwk7T2Z3juZ3r+MlXHmPLxmUM9g/w+quv8+bhP+Ti6Cxz1TRuEKESmV1/liRFkUrj4LE4HhtKoYw9ZZIpWJRAFskcBUqUkOQ6wbaamSJRDMa/APXxDkJJNKPQR9u/mP36C41a24m+jtKzmj2bX4NSfTJBZTQINeuBQNDVmSGRFyQc6eMdFRSb0Q0uneuUSSB9SlFzMdsLB7CoYjtQmClz9tQg508PIv/b98guW8TqR/fwzPs+wvt/aTO3hqc4vv8YFw7uZ/zWWaqFceKOXykCfW9bkEHpppgfhBytv2GPmtkUC4MXRIvZNWO5oACjp5YgpGJ3zEZX0Nuldyi8U10teU+CDjIa1SW/yOyHGeVyN7vNdZFZN37cU3ncIEKpOIuwiee6WLl5NS+/9BgvPrqB2OwtTrz5LT73mb9k6PYk+ZJkFvXyy17ZBs6ngDRlChSpkqm3owcuJnCoUIIGG/J0IZcNzWKly2SzUQveO9BLfwdRmokIXUH7l7fgLa0u/1syGXsQfZCaqT29heCVsPlnApjws1mhvrfPlrz2JBaJuM2CTpv4pLv1Qi1M1wVhgU8tEiiYEQY9yFOKQDZcGkHXfDgcoCZhrlDj1pVB9l/9G/jyAXILN7D6kUfZtedxPvTRF4jNjXDt8Otc2P8dxq5cozpTwtF0pGrjoxaUrF2IiorM9jbmmvmVpYGXDjHNwwHCp0z64cmcWoKQgovghFRA5DS6FoYpJ8CGdJhxISTocvdsW11k1nlSvFGzfvaODlFxHwh5XKc+NYQDyRgLVq3nkedf4dFnnyGdsDl/cC//6t/8X4xePkEyXyAn3Wmo6ztzVPH2hKkeOUAahyQFTYLWQcgVqMtIn0AdRwEYIk22UyJEJQICdNPHxB/Q/tXMXAkv+DDr0EEvIPCKoGnngYyfMQV74DEqGr3QZpJQV4Tm43GPWLOE+ibHEcSwsYkJQRxJAvewtZiIudAgLGKkiJEkIeKkqCKEIE2StEhRIIMUGWKiQoYOlqXT2HaB8lSVfNUzxWqNd6NEaQ+igmI26CAkCIOXx69CYjYag5I2lB2mbw9x6vZrnPrO62R6EmzZsogPPrOZf/rf/xYZMcvlkyc5sO84J87dZmaiiFPVQcjS2oz+1RGPzURBVPgntL0tu808ceGd+tKX6/8gqdQChFy+o8IEwc9o3E5Ficwu1ETtVI81ygb3oktcRlOOjGT2u9x1qFEgZFPRytpAJi5YtLibLU8+za6XPkFi8XqOnrnBX/3xX3Dj9GnKU0PgjGNTogdvCurmXAKHQsPoUjUrRpOhRJEiNbJ4AKZy41QoU0ApDo0gADtHrhs6OkZIiCkXtIRNkgQJkUSSAgFJMqREhgxJsqKGEDYdIkeODmqiCykSpESNbtFDr5higShRFRYV0cOUWAhiCTUrR0J0sExUWGGVWC6msC3Iig6ktZa4WEfB6iMuqiyycmy24qwRQ+SsKjNWhi5rNd3WJqasZQjLpscaZaO1mPXWLbqtIhU7waC1nPXWJobs5dSsFF32DOut26y1b7DAmgQrxri1hFvWem5bKynYHWStMqusIdZbN1liD5O0JNNWL7etddy01zJldZKwJcutSdbbt1hs3SZlFylZnYzZa7llrWDI6kEKmyXWHGvFCIutm3RYkzgixaRYyYC1ittiIUWRoEeUWS2GWClukixd4/qp47z91gV+cHKAO8NzyHIKZFCyVnFFjk8PUgvanRVRYnYFi0qjXFjMhpAnrlohPzLG0ZEzXNz7db7cEeeRdYt4+qltfOrXPskvdSzi+KVRvr73HIdO9jMxXECWBUgPLoK/OqJ64+lBUQwqrAf52UwQoqp44BU+ZdIvZodTU++Yx2jU0RDBnKDLXalFnsisu9xVOWUmucae+Yf/XDDxIpn1nASuyBx2ubu5kphrstnQ251m9441PPfKM6zatI1L/TN86Ztf5a3DV5kcKSOrca1sihoFShQbfCemtZnE3dclfWxIfTUzVJmlWIeptFYmjcuVXBAqguVg5zpYuGUDe17ZwUsPdbHWHmCRNUjCKlMSPQxZa7hlrWTU6sCyYKk1x2pxhwXWLVLWDFWRZUqsZlAsYUB0URExFlBglRhnIbfIMgrEmGYZA6yknz5midNBhRWMsoKbdDCIoMosCxliJTdYwCgZ4rLKcjnJMjlIl7xBnFmKsoMxZxU35WIGnBw1BxY4s6x0+lnk3CDpjFN14ozIpVxzVtDvLCDv2HQ606yQi1nq9NDp3KHmQM5ZiHCWU3X6mHJSJJ0CmVqGWC2O40hK1TLF2hwzzjRjtQnGnCrUqhScQWq1i+Sdm6SdOaZrCa45A1x01jLkLKbiCDqdYdY4l1ntXKbbmaLkCPqdhZx3NtBfW0HJSZFwpljhXGaTc54lcpzFC/t47kPP8P6/u5UTA4K/2XeDQ0duM3l7FqdQBqlM6RJJ5DzFbBdmbGo+mFGL2h8OoKs+LpAIKliOQ36qxOljt7hw4hb2n75G54rFrHv8GV760Mf40N/dwJXbExx++xgXjxxh6vZFqgX33ClTZLa7atRq0j/+yhTzH3ULJjE7mBvWg/zcCjxg9qcWTEgVDO9UVwMZBiG/+uNElFWPERaoPUbjisweC/NywL9TXYFfHESKVDbB9k2L+MTLj/Lsoxuo5Cc48OYB/vSP/4Zz/RPcKTmUyNHYqe6TkVOU6kJxRhskZVbNUtFc7nquCzXFOkwp1SiB64zPCailoGv1Kra88FNs3PMs0o5x8/RJ3tx7gFvORZbW+kk4JaZqKa44K7jorGfMWYh0HDqdAdY5F1jj3KDDmWPWsbnuLOaCs4FhuYyKEyctR1ntXGK9c5kFcoaKA/2yi3PORm7LtVRkFtuZYYm8wmZ5nuVyEttxGJZJzss1XJUbKcmFIEt0cpNN8hxr5TBZWWVS2lxhCRflZmZZBtIiKe+wlgtskLfoo0pBwg26OM9mJuVqJGksxlkmL7GZqyylhCNhgBTnWc8dNiDpBjlLD9fYwgVWMUcCGMXiIiu4LrdQYxFQI8UtNnKe9YzSCcwAV+jjIlsoshKIYzHEKi6wmVssxKEM3CTDecaYZATIgZxihMsUuMQ4ZU6Xb/JfPnec2sI+Fux8nk17PsHun/57DE2VOXfwJFf372Xi+iGc2Ropx9P8PKXIBSF8IBQUs8PhAIoF1UJitmzUrIcD2IDjQH6uxq0LA7x18Us4f/UWHYs3s27XU+x45kk++tMfxJm6w+WDr3Np/7eZvH4NOVtGOLpSpIvZYYhSp0wGxWwvlilKD/KDl86tnMZaCac2mJDHhu5eZK6FYEYXmb2YYZ0rqb1Z5YaKojBYfVFcP1gVhMRKZuhbtYrHnnuMl57byeJEiYsHv8P/9m//gDuX+ynna1SkW7O7HUOZVWGRuUK+fnyY8m55EJXEoUoR0DdcxLWyM5Tqu+sFkEnA8iVZPvzUTra++HHKCx7ijZN3+Pof/hkDlweopWtkxU02c4E1TJEFJhBcZjFXGKLCUgDiDDLOeSa5Q490gxmvMcxFyswxByQRjFLmMhY3yNfhvZ9pbpNilATQBcwgGaKbUZIUiAPjFJhgjBkW1KdfBZhhmllmKAJu0GWeOYrkqVEEbEr1mO8yFcp1V4F7skC5/k5rdb5aQx2ZAtTnkv8cb9eo1wNCwse3BH9ySV0N6pHBjbUmd7+jXY0lwIlJLt4c5cDN15CvXiLZu4HF2x5h+54d/P1//g/oq/0so8e/zfV932TiwjUqUyUqVV3MtvHrSLqYXQ5FZnsbR0xitsegYgHwUqyiClSlhVNymLg5wJGb3+TIN14j25tmy7ZlfGDPFn7un/8Oqdo4l44f5fC+45y+MEh+qki1CvMVs71DbRQVCPvbgmEEugnnxTKFUxMQAt3oanY4fAzqETYmqIlRq/uzFMzohM7bqa4bXn6RuaqVVRpNAkjFLXKLFrPliZd57OUP0LtkCVfPnudP/+RzXD+1l+pUP12OQyfe10t9q/JUqYUimZXLPUmJckO90Y2uNFCghEMRGjDlqT81klTtKt29SZ7fuZz3vfIwy9ev5uqNGb701S/y9SP/N0NjCWS1FxascUdAhuOH/TGm7cXI6FK1mgSm2Ofwr8lGRyfrwnTr2B7TPf4oZozt+YVw9UkIBjUG2/MDjF/A998X9u/KwNV0J1TmLKSThIpFaWiCm0P7uPn9N3m9s8LGDRk+9vQqfvO3fobeVJ5b5y9xcO859p8eZHi0QK2si9l+f5td14OCYrYXDmASs9sNB9DOSKqUmRua4MjQGc58/0t8qTPB7o1LePbpbfzKb/0cItXF0fNDfH3vWQ6dGmByrIIs69qVy2aC8KQzobCYLfEYVLNYJoUH4dQChHQwCR+XocRpN4hQ36muQ00cWT+HUPdloQ1flWqgrAc1tTqvaPiUbOjpTrHnka08/spHWLT5Sc7enubb3/4uZw+dYW5kGKqzQB4L70cDdU9Xql5zoeE214Tihss9T7muOqXwQCiLa5IVyQMlXGMrBlaSWG4Rm7Zs4ude3sIruxYipq5z6ntv81d/8B0uD8zRX4ZZBJIeyCxytxBQDi2aKIDR/xVepNGeLzNTiAI00MEs3AP/PbrnS/XA3yfTJg1/PVH3tBOhHQaY9oIjQ8AYs0h3dTEzkcb7ZAG1EqWJYc4cGmD0SIE3MzbbV3Xx6BPreP8n38dHfnMdJ25W+Ot9NzhwdJCJwSKyKOsCcRUoNcRs5ejwIEaJ2UGIUqZYJcSg9HCA8LYSz/yzalVmJ6ocP3iVc4evksh8k75Vi9nw5DP85Cd/jp/6zfWcuznGwX3HuXT0GNODV6kVJ7FkrbEu1TpVtfrPSDKL2SZ48scVhVMbIOQBkTocXgGPgpkaKjxR13dUg27XTG5z9bClkEDtgZAkTk3USOcS7Ny4lJdfepRHHtvBVN7hW2+e5Pf+5C+53j9HteRqMro/yyFBiUKjZv/2UShSwnObq6fRf3Cw5tts4crPkEFSooAUJaxUnM7Vm9j2whM8tWcbi+w5bu3/Cr/7r/6A4pV+kgWHuHR7lcUNT8yLEk5nFny75M0723U4Cf4rzAJMB4iFAS0YcxSuy+xsDy72aC4WjjkidMV0j8fiTAekRe2fC/Oe4BjodXn1+cdAEM91IWazyIoCIWUWlYhRIeFAebbGpbPjXDk3TvUvj2At6WPR7j3seOYTPP6ph7k1WuD0gTNcPbif6RvHqearJB0Z0oNcmZu6XK1DlOdvs/FHZkutbMUnZvsZlKgf1NYQwR2Yma1y++xt3jz3BSqfe4OupdtYt2sPO555ip/81McojQ5w8cBrXD74HWZuXMPKl7GdoJitg5BucPl/MimoB/nF7HBqAkJh9cfdqV5tfHs8H5h6ZaZIZrUtwu9yV4PqDqNJZLawUp0sW7mKDzz3MB95fju9yTJnDh7g9/7dpzl7eYihuSrjEqp04MGEHtmToqwJxeqBlYw8R5Vyw6zS2VAaNwq6ZBSZe+KC7iV9rH3qQ2x96ePEFizj4qmrfOHTf8WdM3upTp+n25liBbAQ73uVrpfPdmSYTSbry8K0RcIEHOEFaIVKRW+3MNUVDXpmZhLupRkc9XrM7MwMjGHY1UsSqsurJ2jMeiyn2fOF2rJs6F4MI+qqg8tXiiSooTiSCjScLkgGr43y5rVv4nz1LOkF21i6/VG27dnNSx/8x+SKI9w5+i1u7vs605evwXQZakExW23uCfvbEnV/WxCePDHbvHnE0sArGMtUllApVBm52s/I1a9x8KuvkV3QwdbtK/mJZ7fyKx/8Z8SKg1w4cpBjbx/n/OU7FKbL1GrNIrPDP5kktTb9DCqcmoCQyZ9l12VGL0eP3ynjaCIzvlx1AJhJ+XGFYldkFvEYuUUr2PrE4zz/8lOsXdLF4NmDfPZPPkf/qVNUpwrYjrc9wt3lXsJzm6vHckGoSpxSfaMH+GN3Ug23eQlPZPZgqsJs/exEiNmwsDfOhp2rePiVF+le/zQHblb4669+jXNHblEcm4NqqV5XigIz5OvembTWbtYWlDvSzDZGMMw4wgs+fE94kfrZkGiUNm909deuswRzm+0Aox++0EoFwcorKQNXwsDRjqkV7Lf+tKYnxnBPvb10BlK2ewojNaCEoFj/LHlQoUCkSJ3NlG3yA6NcGfg+V777fb7dJdmwqYOPPrOa3/ntX6YnNsXNs2c4svcsR84MMTpepFJRYrbub3PVIiVmqxxdzC4BMnTMiAdCcZxQjtKg/BtzLWS5zOxAP4cGTnP8u59jTVecJzYt4/k9D/Ebv/2LyFiGI2du84195zh4ZpDJcae+0VYPtwwf+F/FpAfN2xwL+sJcyHDq/ixdKPbwUe3r0mOGwBOZyyGROQGkbch0dbL6kT08/spPsWzLw9weGOHN77zJZw79gJnhS8SqE/Qg6cJjXuolucdl6G7zsMisby4VeKbVHOW6tycsMjtWikS2yiNbFvPhl7bwyO41zE6XeOPNM/zHP/wbjgzkKZQWAIuAznqv0kCOElPMUaRYb0dNpt4umI0JbQGaI53B/602bVnw6yHuUnIMSzJKdA5fCS/tIHsJcrHgZtHw+dF3x4Si2VkzAI0CRrRx8u7zRs1zvSCAnh64MwLSXfI2pfpHy3O+K69YqTGbtPDWapHS2Bhn3j7C7QNTvJGLsWtNN08+tZ6P/MIrfLx7OceuFvjS3mvsPz7M5JDjCsRSN8WqPpnbgyddzA76zbyD2oIbR5SO5O1tU6Cg8atqmZmxEoffvsi5AxfJ5GIsWruUzU8+zc/+4i/zia7VnLw6wv69J7h8/DSzQzdxytOIgI4k8IcD6IE1ptQEhBTVUq/RRTPdbR7lcvfv61ImmRKZ64eHCejKxli7aTlPvPQ8mx97HwP5BN/4/kk+95+/yFj/CLJUwj0azKKKexyqHp2jTBz3TOYSXjSyQFd/yszVdScaQ6JAKEWVuQYbyoCII1JdLFi9ihdf2MRP71nDYnuYq/u/xx/97ue5cWWSkYJkWIK79SCPcrS6Nbsg5JBjhhKzSLL1/qaSEMsGF5fHMfxfZZUf5D1C4xZmlhM2o8KeNjAdm0GoVOsrzZiQ/0rwaYL9DjIvs1crCmCacSPzTjg/eCoIl8hEHDoyMD0MFEjg3xOowMAN1FAfHk3MbjCoEglHUpqucP7kCFdPjcCfHSC5vI8ljz7N0y9/gj2/sp0rQ3lO7D/L1UOHmbl1hlq+QlzWGkqRggrFgqqNT3DY32YSs5Ww7BezFbR5uXG831CTDkxNV7l94hZvnLxF8c++RdfyR9jw2PM8+fILfPxXfo6ZoX4uvP0alw99h7n+a8TzZez6MKtaqyExO5zaACElMiv891zuYV+WOg41CEJ19UcksJOCdSsX8P7nHub553aRTKU4cOgc//e/+3ccvnyH6bkEyE5ciPD0HYd4A4RMInOBct340X1hym2eaERBS/wmmTrVR8YdskuWsvapZ9n14pMsX5hj5PQB/sOn/xuTZw6RnS7Q5XjPmcFVjvIUkA1zTtWcAzopMM0M5UaIQE8XTFnmLzy+K1FMwcRDTKKz8F3x1+xP5vaiDgcLiru6GSVb1BV84igtJxpOzEwIY+1o182jG5bGLT3MpDMDczWouaaYghllaigQqjU+hQqEPNk5RqWREwekhNmC5PLlUV678g0qXz5JeuHDLHvkabbueYwXf/JZkrND3D78bW7u/yqFK1eJzZaxa/7I7PDeNo/NKDFbP6jNL2ab/W3Bjbk6mylJKBSqFC7f4M6Vv2HvX79Gx8IetuxYwyt7tvH3PvYk1uxNLhzax8n9x7l8dZjSbIVazSRmh1MLEAq63FUkc6mh74DfJHNd7rrILCCWpmvxEh5/Ygs/9dJuNi9N0X/uMJ/7L3/NuVPXGZksMeUooS6Lu8SlVnNYZFa9UbE7s1Qp+URmNaTqqI2izw+WAHI2pHoyPLbzSba98nfIbdzNxRsTvP31t7h1+BDFsYtQvUk3BZbXe6WHJmaBSUr14EUVnpis53RSI8cM48wBi7KQTsG0ATiCZo2fvfghh8h7onhINOiJwB/vHggaVmFne1iV8ovl/vaCZlvYjIoyx4K8zr3DA71wKR2EIfh8lvFKKJzBtqArgT1erH9w/N6tEi4IycYMVPJxpf6nQDIoZuN5xSrSplYSzPaPcLH/DS5++wcke2Ks39LNR/as4Rf/6W/SxTA3Tx7n+N4znDw/xMREmXJVzTGTmF0KRWZ7pyCZxGzdu+U/qA30bSVqxcRBWshSmen+mxzsP82Rb/03VvfYPL11OS898xD/6H/4FWrEOHzyJq/uPcuB83eYnBD17VHzZEJ2I8Y1LDKb9nWFRGZbkurqZs0jj/PUK+9jy5a1zAxc59XXvsx/OPRdKsNjpKqyMVhqWEu+3eaqZk9kLtf1HeU2V9+hNJIyxTorCe/rKjNLkSqOBR05my2b+3j0pUdZvfspbs7k+MvvHeGNT3+RyYEysqT2/SSALHlmyddDG5XIrMy5JFWqvo2pni6k2FBRVMl1giVMX+X2vGPRZobpSpSppd6jH4Rc4DAZcVHnCUGQnfl7EG0emTUhs7M97FZvpfeo8QyX8j9fMyHcS7FsktSsIF32IufBnRlFXLVIGfV+tcgVs1N1iArCk8ugFIdXOlKZ0sgwZ0eOcG3fCN/J2Ty5vpc9T6/nk3/3A/xsbgHHLk3zpb3X2HtyjMkRgSwn6o8eFrPVupJ4Irr0hQPoe9vKxshsp3FH9MZcWS0wOVLlwMgkZ/eeoTMXZ/n6pWx5+il+6e/9Oj+TXcmRi0Ps23uSq6cuYEqRIOQSS93lrqaPCzVVbV+XmkZJAYlsgi0bN7P7pY+z4bH3MV6UvP39Q3z1v/wFE/0XqRWHSDBNT31IvBq9M5m9A8B0qHFF5qImMiui57Ghcl0bqtSv1N32IoOd7GbV6gw//fwWXnx2Pal4jRP7L/CH//r32XdlnGt5i6pcCizBFZmV0dVBhSlm68qR2iHvudwlefLI+tTyeFa2XjZFsnOWRMIEMOp1mxZE+FvdXFvBVwJMi6sZE5K+OsIeLf2+MMBE1+UZctH3hMV5v7ufep/mA8R+JuQfFRN4hvtkWYLF3UmyIwWSUu0M8LxilcYcURCllnwRm7IRnsJitr7s3ZpjtSrFqSpnjg5y7fggifQ+sit7Wf74U7z8kU/wwt/bztn+WQ7vO8v1oyeZu30Rp1jFkv5jRgTNIrN1MbsSisz2zg3QxWwFQrr553jKVA2mpioMHr3J68dvUki/SveqHWx87CWe+8kP8vFf/2VMKRKEXJd7fW9WSGSO42BTqYNQMmWxdmUPTz63m93PvUAttZjXDl3mD/79v+f65WGqczXXIK6bSUGRWY9kTiKp+ERmP9SUyTeCCNUDKH0nSc3PSuJZMkuWs/3JD/DRlx7ikYU1Rk+/zn/7o2/Qf6afmeka046SlC2trAK/FJBDkmOuDjVlPOtf8Z1JilSYgwYLU2pVhli8g1yHO3XDzERfEG6OJ5JGayZoV00ubJMBY2I5qj3TAjQBTFR0st8/F9Z7wgCj36PXFX42E+9pfcVspPnzzUDk749FNi3oTUMir/Mc1x3hND5/yuBSv8pSJEG14VFTYrYSlsvYEOFvEwFPHA5MzzlcPT/Kty58jdnPHyS3ZDfLdz7P5j1P8vLPvh8mh+g/+B1uHPgbytcuk55zAw31yOyKMTLbz6DaE7P9EUvBcACVU3JgZq7E9Lkr3Dw/znf/6tvkFi7kX3zyKwRTUxCK4dS3YgbVnyR2PMvChSne/8QWPvzSo6xY1sOlc5f5q//3L9h38jrXp0qUax3Q+I1RBWAqktkTmQXeslUHgDm+fV0e1NRIUKTgO2pDDwQs2VUSPR0s3/Es2195hZUbVzF96yZf+8ZX+L3DXyM+epNFVfeXT4NHbRR8MUPKSHTZUIlJ5ihRAs/bVf/vNFUquFtFXBal1LEUia4+LHsKoYFQmL00C9TT7wkvJRP3Eb5/RS9dP6PysxxTjLG53+E2Te7wKMOqWZhCFMiGxkmYWZV/LP1QqXvIdJVIqDwB4B6ttrAXZAVqFc8UK2KBTy3SIapACqehISru4Isr8oGX52+LUY4OB5AW1ZJg8sYdJm+8xplv7CXVl2bdtoV8YM9afu1//h06K7e4cewgp/ed4tylUaanKpSr1EMJg2K22iTr98RBMzFb8SvlUYs+qK2xMVfayGKZmVs3MaVIEFLoVkE7k9mKkezuY8PDG/ngK0/w1NZl5AfP8b3XX+XMwZOMDc9QqNI4DhXfkaaK0bhQU6FIue42F/gZTYJaPcJG92f5ReZSnaMlcc3ARTmbzZtXs+WlT7D40Q9xbTbOD948w3c+8yVmb1+F0iAwTQeSDlwGo2zgDC6YTFOssyHVrudyr5Fhri59V/GYWw7oQDLLLA6zuCEFdT9KKgeZIubFpa7Ul4lozjokuudL+haOm7wrqlZL6Ff1M+9sLGH5ot1jCCyhrlhYIoFNgjgWCeFQRZAkTkIkKJJEijQ2aVIiTZoEGVEGATmSdIgsU6IDR3RiCYsOuukWXfQISUZIqiLJQrGACWshBbEIS9ToEgWWWsMsF5JeUaXDSpAXK5i11jJprUWKBDkrwxarxGZhs8wqULFs0mIJwtpBv7WVqtVF1ppkvZVjl9XJGmsc2xKssRbQZz/MFWs7c1YfSbvEams9O+3VrLX6ydhVpqwuttlbOWdvY9RahmUJVlhDPGw9xibrEqm5Ec4cvML+0yPcHC1TrqiZ0+AsKIiyKDZylOSggKSAzqCUWuT521Rktsk17+3Ur4NXpUzxzjhn7xzj4pt3+Gan5NlNC3jf0xv4hX/4UUSyg2PnxvjyW1f4/pkxJkYTyIreptrb5t8eUtP664nZYX+bOmVSjw/ydCSB+YykcGrKhBJAWTjY2RTLNj7C7pd+gocf202tOMeJ77/OF//0j5i+dZ5MsUIOT1lX4lgRdZ6zWWQuUWr40Dzlx4WaUmhflwKEusgsKsRSFhtXdfL085t5+NnHKMcX8M0Dt/i9f/0vuXKlSC2fAZmuP1EGyFFkhjzuMaz1racNRpOkQpU5aOg7CS03R4Fp8vUNJsrCduVnmKBInmmgBxLdJJesILcyx5LkVdZbeTaKYXJWjV4rg2NtwhbbmbZWYVnQZ3Wzw4rxkHWNPqtEwU7SZ62iy9rFHWs9jp2myxpnq7WE7dZ5lluTSMtmi7Wc9fYjXLU2k7e66bTm2Gjv4GHrHCutQWK2ZNJazFP2Q1y0NjNh95C0HNbaQ2y3L7LSukrWLpK3urltbeOCtYl+azFYNiusCR4SN1hrXaDLGqUqsoxYG7kktnLFWkJBJFholdhqDbBenKfL6kcIwbS1hpvWFi6IpYxZWXKU2SLGWMs1+sQl4hSZE4u5w1YusIJ+OrClZC3TbOIai+UF4oxToYsRuZELrOcqXZSkxTJm2Cz7WcY5cnKAqowzItdxTa7nvFzIlEzQLfNscnax2jlPd+0aODWmnCWscjZz1lnJsJMh4ZRZ4yxms5NmqdNFzJll2ulGOmuZdZaCswDpOHQ4RVJODuEkSMdSvO/nnual31rD0Rs2n9t7h7ePTTI9KJClmEuV6jAT1/QgtcCUIO0yKBPXcf1tQTFbmVN+BqVv5HBrtmpFChM1Th64yY1DN8lkv0fPqj5WPfkYH/3ZX+Dlf7CNY9dnOLDvPDeOnWNu8BqyVAUZFrOVgO6KGvFArudvi9V7ZNrb5j+oTTf/wikShDqSFqtWLubhZ1/k4ed/knJmIW8fOs8f/++/z+DFC1TnRkBOEK+HTumbHnSRuRz6zS1dZC5FnMqjRGbFO1RXU4h4N32LO/ngk6v4mZe2snqRxc0z5/nyZ7/C/tNDXJgqc8dJUmMZrsis6LJ7qHyVFHlmG0aXgsXG5lLmkOTxxG2PDZVJkK+fnKh4Ugb3lJ4eW5LqTbB01xNsfOVjLN22gVVdgk2MspZrLJDnictZ5uQCBp0tnJWruOF0gJSscKbZIp9kmXOOpBym4mS4I9ez2dnIJbmIOWmzwJlis7OM1c4iumU/VUfQ5awg7mwm5ixj0kmTqc2xrFakzxkjW8sjnDKJWgLbsajVJMWKQ6VWZtyZYcQZpqM2SNmZZdwZ45IDpxzJbWeWWk1ww7nNhHOKYecsfc4U+ZrFVec0R50r3Kito+SkSTljrHVOs8M5wXJnDOk43HC6OOps5ZKznbxcgO1Ms9g5xw55lI3OEClZZdBJcEKu56zzCLNyBcgqOecq2+URHpK36JFVJqXFGbmI43IXU3IDjoyTkP2sl8fYKS+xXJYpScFFshyRjzAiH8KhCyHHWMxJdsvTrJcFLOAmMY7KjdxkJzW5BEGBLOfZIY+xlUk6gGEEJ+RSzrObKmsBgS2vsYkj7GSAJcBMWTCe6qJr1x52PPspHv7FnVwdKXPuwEX6Dx5l7uY0tXyJlOP4jC3Paa8MmCgxuxQSs3UQkg3wCvvbktQaOTgwPeNw88wI3z77KhN/sY/MssdYtetltj/3DC//4scojwxwff/r3Dj0Fao3L5DOl4k5Hl9xQUh9ak1qUfgntBXdCIvZur8tnCJB6N/9H79Dz9LVHLtwh8//6Z9w5OQt5iYdcBJa0SRVYpTrUdAQFpnLDbEuHN1TYa6FyFw/PMwWxLsXsWLHZp57ZSdPbupD9h/mG9/8Av2HTlIaLVCrui/ZfRGVur6jn+fsQo0kS545CnWOpl6cq/y4InO5wYayvrIOmfpvprqDHbegK2exbetC1r38Er07f5Ljkx184/un+PYX91KrTNMj3QW4TY6Qkw5D0ua4XMEZuZsia0FKEvIaWznMDtnPIlljBsFZ2cUxdjIttyDJYDHISnmc3VxkFVWqEq6Q5CjbGJYPA73AJL2cZhen2SSLJIB+BEdZy3V2IVkBlEjKizzMUbYzSTcwDpzkCGd4lAobcI2zm1znCAP0swx3bC9wkaNMMcsYLv8bYYQTVDnPBDWEhGsMcJoqd7CBxcAsM1wmyzXi5MkAd4BbxBiiD6euiRS4wx2GWcgMDu5vr40xziTjlJmoz7VppphmhiKzdZ48R4ECc1TJ19+ka6wX6zsKY1A/SKZUD7JwnS1V3HMdlOnhHqqmHymj7wKvCxK25FL/JBevfJvyV66RXLCbhQ8/yfo9O9jz4d105z/G+JGvM/z2l6hevkZqpoKob1gt4iqGtUZwhzK4PCCJa8GNCp784QB6rseg3HCAsK+tAhQk5AsO+Su3Gb3yKke/spfUgi7WP7ycl59dy29+5H8km7/MzSNvce7tU1y9PEZ+pkqlpvQgffMIKK4jApHZQuuvK2aYxGy10v0pEoT2vvYD3j78x1wZnmWkAhU6cUVmRa9cWVeSoIz3w39+5Yf6qTyKdwj0eOUqSYrkDXvYIStA5OIs2vQQW1/+OKt37yY/V+D8mz/gG5/9NDO3D9JTmmIp7iGtuuHkisz5+utTJwIpqMlRYoJ8HR51RtOBy5XKzOAXmVWvchTFFKQc1q3t4KXnV7F9z3oqIsubbw/xH/7l/5f916qUk9ugcxNQYJJJJpliijISN6hytr6MaswBghIF8hQp1GHXNURLVBomaRyHKhUqVPCOgFPnFnrhDBL1swRO44rUFpa3uJzGv1SSgSsitA/N/TtYyiQ647sS7YUKetCCYnnzmCOTdhYtcofF8mCfTE+i/YA0UkCyy6Y6kkKWYxQHxrk18Ba3Xt/H3m6HtZuSfGzPYn7pn/wSffYd7pw+zem9Fzl2bpyB8TLFii5m62qRJ2brkdn6JtlqKDLbE7PtCDHbNfAEXjhADMoVigP9nBk4wbnXh/had4X3bV7IK8+s59f+yU8h7QTHTw/x1b1XePPsKKMTqfrRJvpOffNBbZ6YHWRQuloUTpEg9OrfHKaMx10qPrPKDzXl+qaJoC/LHZRaHYRM/qw0RQqU6svEAjpSgtWrutn8/B42PPcJRhIr+c6B63z+336ascv9yPw4yFHAbvAVJVB7MAPTFOpfRz2I0IWpKmnm6oZiTXtFrsgM08xRY7Zee/3lxbvoXLqNl59+gV99cSWb+mYYOnmUb/z+9zlzdpLLMw43HXDi3dCXxS9DN9sdDkH/jX8R47tP/b/Zz9UsOtns+TL3yX+12T3S2C+Ts93/FO343kzBkeE+BdtrFk/V2tPmB+swpMbTSeKZPmpzis1YUC1SGR3m4uh1PrP/DvtzgqfXdvLUU6v4iV9+lg92LuPYlQqf2zvAD47PMDmcgEagoV/MNvvaguEAilmoY0aqPjFbDweohBgUjVxZnWN2tMDR0SluvH2Z7pzN4nV9rHvqUX72l3+ZD3ZuYf+VafbtvcD145fJD9+GchWk/6A2XUB3uWYwMhutv+EUCUIKfHSR2ew2VweAlXx+MD2SudSIZNZFZmWSxanFqyxenOF9T67hmZceoWvRUo6dGeEvPvv7vHl6jNmpHDi9uBDj+bOKdaipqAmCF7uTpspMw1vVoT2NC1PqqA2FzSq8sBMYp8wss2BXiPX2sHjXLna88giPrOtCXD/M5//mPzN95BDp8SLZqvvSGyJ1dyfjltq8YHZPm/d8ef/S/zbd410J36NfNX/h/VtAokuiAYwONaY2o/pEvZ5m94hQTvMnaVVXK5YTfcUdFbNuofdOdC+GYg5qfq8YzJF0alSm4eKJcfpPjsOfnSC+vIuex57g6ff/HLt/dRfn7pQ5+fZl+g+fIt9/GqdQIuaUfZtkwROzC0Yx21OLmonZHoMK+9v0vW3CgenpGgPHh/n2iVcZ/9M3SS3fzerHPsju97/Ay7/6c8wMDnBt/xvcOPwNKv2zpPMl4tLPc9xVrtaaHpmteFI4NQUhXWSeo1Y3YHQ25LnNFQjV8DBQYfcMhl+osDOkuleyc8ej/J1XtvLkphwz/Rd4+5sHOHr4JldGityqunuYYTkukOhBhFmqJMnXa/YrP+oHlvM4DTakXqAyyRLkKTbKKi2qy4LluQSpLVvY8PKv0LvrKUYmK5x/8xjf//3vkh/YT6J8mbVUWI1/q2xnSjCZjjEeYUJE0379bw8CTLyn+de92dGtXpvqnmiWg6/foD9JdLCiflX/lxlg2illbq/VPc3uU3dGm2zBsfLXbCERsRjkemFK+YTKQJ4YxbocUDeYJMzkJYOXJrl2+TvMfOk86UVPsmjHc6zd8yjPfPxpUtPDjBz6Jnf2fwF57RKZmUrjvCzl0g+L2aAzqChTrIDa2xaEKC8cIBg5pHSkqXyF8Uu3GLj8VfZ/aR/pRQtZt2M1L+zZyG99/H8hM32eG4fe4NL+49y6Os7IbI1KY/+nSS1Su+bCKRKE/NE5LtSUm0Yyz1GsByAqqFALO0WNWQogKti5LH2btrPz5cd5/NH1ZGcHOPbm5/nyZ79F5fYYyZJsAKBym+cb5zk7WpsZXJE5TxFPZFYgpETmok9k9pSjGpn6r4RBTUA2BRvX5NjwwnZW7vkAA2I9n98/xBf+5X9k8toMslABOY37k0BppurhiR1qagjo7YH+0K+U+s0Rb1kHQcGfmjEhEbqqL6PW5/I0hwD/fdFP4u9pFAuKhqTw07QG62amJL56WkOleY+Z6QOhA3+DxXZ2Qb4MFaU9zpGgTBa/38uFJyhIm1opxuytEWZvfZ+r3zxAvCfG6q0dfHjPUv7+P/tNFsgbDJ48wrm95zl7fpzRySqFqtpnpniSYhaemG32tUXtbVN8xWNQQdd8EerGVgpkHFmqkL91k9O3TnHmm6N8ubfAS1sX86E963npn/0sjpQcP9HPq/uu8Ob5EfKTKWQ1KKB7Z0kGUyQImURm9wAwxYYgeFxGsW4a+Y5DFdCbjLFk1Uo2P/czrH/uA5QTOc4dPMNn/81nGLu8H5m/zAKZZxmeDKyGPYOkwBzSJzJ7jKbIZEhkTuOCQ4YaxYZJpitH9X1diTl6lyT5iadW8vyLa+lakOXcyRH+6g/+X75+dpSb051IZw2uqz/TqFnSxTSzTOM0DlnLZKGWCC+5aGaC777oxRxeuirf21/ltRl93IViAX7hVr/PBIx6e2ZuFOxptLYUflrzGPjHwcyE/P021WOqy19P8/fiT34Qqrn/6MzB2DTu/JojU4+SVqqNu08M5qAu4ypAcDesVkbucHnkFp/ee4u3OiTPr+/i+adX8tG//wIfy/Zy/EKev9rbz3dPTTM5Uj/7Wur7+POktOBGXcz2GJQeLACKQQUPalM57tmgQmNQCrzcvW2yOsP08ASHhke48dZpFnXEWLGhj41P7+YX//6v8dHsBr5/YZLv773E9VM3KI6MQGUWpCtmm1IkCOkud2+/b63uoA76s1w2VKqLzA6QiMOKRWk2P7mZ7S9/ALF4B6+fmeDrf/xfuXF6kOpUAZx8vZ5UndF4GyZ0kXmKUn1vVnBflysyz1JulFUalmJDU+TrXqh6eKKdJt67mk27dvPzr6zjxfWS0vX9/OAre7lydJCB0Sq3a0q9EngxQ6Jes7sVpcA4k8zRA2Rt98M428I4CScTL2pvAZoXfKuNmV4yCeGmku32tPWVYF1+CIg2qqJAXRruIbIuQmPVSqD3j4rHhrRzh7IpF2GKeWwK5PCc7wKPVbizXMXlhyEqVitRnnQ4d6TI4LEhkukjZFZ2seiJx3j5Yz/Dk7++m2P9RY7uu8KtI+cpDFxCFksI2dwUC+9t8/xtUWJ263CAUsPisGowNVll6PAQ3zn6KpPpN0is2sGaxz/KMx/7EO//9UWM99/m8r43uXHkW5QGxjClSBBSZpUyydTDhn+hwotkrtl5st0WT+9Yzgdffoh1m5cz0D/Fq996ja8d+iwXRyS16mLc49/V6/KLzCqS2QsvVHuzdF+YfqJPjrx2nrMuXbumUpk5K4+dS9CzZQcbXn6azTvXkJq6w9vf+wJf+v3Pkx4YZFHZ3c4h8MAvTpGSD/wUi+qiRidT5JlBsqoDYjHTJPYWTXhRYLzSjDu0dj3j6wEE+xQ2CoWxlJtai9fhtlTJYO3BOqI0qOhx8noZ7pNJ8wreF92Wufao9pR47YBwoCsJpQIJWfLpQT5TDBsauQouVPhi3segcGBqTnL5/CQ3LrzG6OePk1ryFEt2vsKaPU/x9M++hJgYZujgd7h94AuI62fJzlWI1/X0dve2JevhAGYxO8igVDhAqREOEPS1FR0YmytTPHeNa+e/xPc+v5fMkuWs3bWeZ595mN/6uadIT5zDlCJBSIcZxTsyuL+5VWmAgQSRwM72sXzTJj780lY++thS0vmrnHvzDb7yJ9/hZv8cwyXJFNQfuZPw3iy/yFwjLDLPNkRmPZLZE5ln67vNFBtKC1iYEvStXs6KFz7Fkj2fYNTu4eT+q/z17/5XZq4cQxbOk5CjrEY2vmLe3nkX/Eo+c059WTqBLgqMUYmXyXW4Yxa1cMLJvPE0uoTHcqK/3BA0M9CuBvsTBJhweyagMiX3XuH7V7j19lQps9EUvi+YooXw4DM041leXc25GPqfVAwrK0nP1nw8R8mw7idMfbyUcqOO7XAZlA5P4M60AjAnoVS0KF0fZur6d7nw9UMkFmRZ/VAfr+xZzj/4X36bnvIlBo/t4+K+s1y5NMHUVI1CTR07a9o8UvLtbTOL2cHI7OZidigcQMaRxQpz129w+voZznxtgi8vKPK+rQv41K//96G3FwlCwQ0TeiRzhRJWyqJz1Xo2Pvccu57bSV/S4daB1/kX//Y/Ubx8lo58lZykEXMZLTLrkczuYanqjEI9knmCUl1kVmUVP+ugRrYhMos4rFyaZNtTK9n84lM4C7bz6qkCn/vDP+La2Ty16Tg4asp1UCHLdD1GWh1V76lGkunGxtRgaGMnVTLkeipYlvRNYoHfqR0EBS/5jQX9ivm3strTYMKQo7fgv+pdMbGAKMYUfU9zFue/alrw/rbCdbUbZGiC3WbeP71dlYIs1lyfpLMrRXfRIlN1fKaYqxRBra5u+k2xuku/LmYHGVQBd089em6lQnnwFpcGD3L1jZu80VXi5Y29vPzMKn72H72MSGQ5fm6KL++9ybdPTzE21oGspPDEbLW3rRKCJ88UU+EAJgblitkmDconZgf8bbIyw/jgEG8P3sCUmoKQvukhAXTGBR2LeljxxCtsfflTWEvWc+bsbV79k69w5/RhKpOXsZxbLKwTOmUaKUbjiszqALBwJHORyUYQodowkW6UrdVBSBeZ6zXbPaR7bJ7ctYhPvryejRtyjNwc5vtf3cu3jnyJg2NlxquLgXV4InMKF2Y6mWWaWWqN0ETdnEtQpNiIoO7Q2s2QSHeRTKtThlozoehvtMnMamcBhpeIDn5m4NDvC/YwzAv8PW1HuTLV1Qo4wgs+zDr0+/x98vfCG4OwshN+EtPo+Xug/pigyK01HhMsyglSk2FTLI+Fd2Sx2vLkQVQGx6gUuYElam2EGZSozVEaL3H6wBx3Dt2iM2vRs6aLZU/s4kM/9ws881s72H+9yIF917h17ArFOzehVAGZJ3jsrD8cQLUZ3jyi9rapEBwFTy4IBcVs9TTuEyXqPj5TagJCghISacGC7hjbHlnG7vc/w6LNj3FiAD73nVc5cug2c8NVqIr60LmWpr6/Smc0nsisYnd0kTnXiGQ2icxu2Tw1VVZ0IHJ9LNiyledfXs9Hd/XRO3OC09/7Ct/49BkmbheYLrvHiqQAwSyy7qdwk6q5kyJJpsk3who9jgVZKhSZxq2pi0YUqJUm1t2HuxPKTaYvbvj7q+d4V6MZTrSpFWZChK5Eg0IYqMILNUrg9ZLZsDTpL+Gr3vO1gubgVVOfgmPlL9XePaYnCb9VGbgHBD0dkMuDXfYEaZe3K14dVouUKaaL2Q1TDCVm6wxKGXl5klQaBp5V37B649QEXzv9Xe78+UGSy55m2aMfYssLe3jm73yU8vAdBvZ/l9sHvwS3psgWyiQcL/ZamWI1zeYJch21t01xKw+eoNyweRREgXdQm7e3zZSizxPq6GHbxj4++dJWnnpsFeX8HPvfPMN//s/f4eCtKYZKGSTLaUdk1o/LSPlE5uBxGR3kmWEO70cDfSKzKFNK1ehYvZrVL3yAtXt2krElg/v38i9/9z9RuvIDlhWKLJPeri/lJRslT7mh76iDR1x9xz2QPt9QnBSp7MCFnSmmqTKFu3eujufZDkhMGE2IqBRl0rRmQm6KFlPDorKpXX9d4R40S+Hna9c8os37zAqQiau00rxMo6HalKGr4XuCV8Ijq78l118mLEFPJxRHPSCZhTrnUKdXKX3FVYsSlIxxRQV0MVvZE6BDVDAcQMHTrHR/0WP6yiAjV7/FiS8fJrGwh1UPL+HFPSv5hx/9H+iZO8Pgke9xdf8Zbl6eID/jUKyZxGw/RKU0MdvvawvubfMf1KaL2aYUCUL/5j/9EasTY9w69C3+8N99nsHLo0zPOUxK9SuLRWqNA8BUVYrReMdlKPXG82WpSGZVNigyJ5mrMynFSjrj0Lkky/NPPcOqF3+VmYUPceD0KD/49NcZP3MBZ/oaODeJ45DD3U+ewzuC1Y0Z0jemVvCikVw2lGe8/osdXlhjDhd2Rigxw0S95gzEMtDV2Vg00UZM+HsePdGjGI7ZQDG3F3W1uRYSvq/elnbQmrlmr+9+8FQL3l2kekSTQD9szVvIYCGwsYR+/JrAxgLhnugpiBMTcWJYxKkhBCTV0WvC/Z0JISokSZMSKVKiVN8MbZMTGZJkKYscQkgyopMu0UkXM/QIB0vY9IkeukUfU9ZCEGmSosoSsZSl1jTLRJ6KsClYvQyLNQxYa6iKHpJWN2utIhtEkY1ikspkhTNXZ7kxXiFftZBGx70LJGnCYnaYQYUhqpmY7YUDZEAmoFyhfPsWl28f5cpr/bzWPctPbOnjg3tW8Xf+Px8AYXPi1Chf23eT8bMT5Cc6kdVgzea9bQpO/eEAJjG7encg9JnP/iVDZ14nNznOQsdlFupct3YimecCx2V4MAPjDdd3lMhcoGxDV0+Mx3YuZOcrD9G3YSunbln856//FW8e+Sxzo1modmm96qBKhhnKDZhRelQH0Ilkmpm6yFzEo8cuzyqRYtaN62545zK4TKgbhzmmcJgGqwu6FkK8hsCq/887ydDGwltGEkvEsLGJAXEBCQQJbGIiRhX3eHFLJEmQIiFipKhhCUGGBBmRZk6442mJIlnRQYfI0CnyxIFukaRHdDMheiiLXmyRplcsZKG1kEUCuoSDEAlWWMuZEMuZs1YghKDDqrJOjLHWEiwRZeasOFWxnIK1lSFrKzUrS4foY6vlsMtKssqawrFseu3FJKxHuWo9TNHqJWPPst5awGNWHxvsO6Qsh2G7l+XWI5yxdjBpLSdmOay2trLb2sRW+zKdVp45q4ud1lZO2bvot1YgrRjL7Al2Ws+wxT5LjzVGzU5xx97IeesRLtmryFtZ+qxZHrb62SzOsti6iW3BuLWaq+IRzlprGREd5ESVrdYID4nzLBYXiVl5imIpt8V2zlgbuCk6sC1YL6bZJq6xzDpDhjFKopNhtnORdVwUCygSYxmzPMxtVsoz5LiJI+NMyg1cYhtn5ELGZZweymyTQ2zkNN3yIqIyzfR0jcOXa/z53iF+cKLA9HBa27DqmmIW+ZAppuDJY1AKhNT51UrMrvgMPFWrK2abwgHqEFWdZm50iuNvTTC07zILOiwWre1m1dM7+OSv/BIvdD7Mm5cK7N17nVsnb1IavgPlCsgCMcJ728Jittnfpu9tM6VIEDr5g6MICkhcAAoymiy6yByGmhITDZFZZyXud6EWcH3X1R+rg0R2OVu2rOFXX1rH87t7kDNDnPreWf7ij/Zx6HaBcyXBHEuB9fjP+8mhRGZlzqkXnK2DyQhFCkzhicweG3LIMsMs+XqPlIXbAfQImEs7pNcuZ/VznyC1Yj3ZWJGN9hPstE6zxrpG2qowaS3kOWsHZ6yt3LGXELNgnXWHneIC66xzZK0pylY3t62HOG09zFVrERUrxgprjh3WddZbp+myBpBWkjFrI1fEds6IZUyJLL2iwCPiDuvFeRaIy9iiyjSruMnDnGYVAyJDmhpbmGQb5+njHDExTZlFDLCd06zjKp1IYC2TbOM6y+RJsnKYEhmG5FYuyI2clQvIyxiLnFm2O4+zRp6kw7mB4wgmnDVslA9xylnOiJOiwymyWa5ki7OAJfICllNkkbOIpPMQwlnHbacPyymzyqmyxJkk50yRrk1RcTKkakliNQFOjUpZMusUmKhNMumMImrDlJwYN2uCc06GSw7knSwZZ5Tp2mlmnKOsdO6AU+Omc5ajzi3OOtuYcRZgO3Mcqp1nl3OIDU4/GafMkJPimLOeE85uJpyVSOnQ5VzhEecAj8irLHCKTDo2J+USDsnHGHM2U5NJErKfDc5hHpVnWSkLlCVckB0ckDsYlI9Qk71YcoxF8gSPyaNsljMkpMNEopPYlqd45gM/zyO/tpuzAyVOv32VwcOnKdw+hSwUiMtSPQykHTFbAYkLQum6v00ZPuHIbFM4QAG7vrdN6UhTUw63j4/z6sk3uPOnb2OveIJlj/0kOz70As/83UXMDtzh1tvfY+DwV6ndHiJbqJKUfjHb1YOaH9QWjMxuG4RcRpOhUDeNFFToHqvJkMjs7WPXRWZ1JrPaae4el1GPZBYVSKbIrl7F1hc28dKeNWyMjzC6//P8h9/9IvmrYzh5SUG6teeQzDCDZLY+9ApjPZF5pn6kWVBk7qBKoSEyd+MdSK/0qDHm6mf6dADZBCxYmuSFpx9i5Ys/zWjv47w1kGC8msR2HKQD1UqFilNAOEWmHYth5w79tR6GHJBOlYJznVjtBGXnPJ21GaadBOdqwxxyJumvraHsxOlw7nDJOczO2kmWOuNUHMFFZwEHnJ1cdbZTlN3EnDFWO8fZLY+wwRnFdhxuyDSHnG2cd3aRl0sRTp5eeZbdzkG2y0FyssqwE+OIXMUJ+QSzch1SQlpe4SF5gN3yGktklWkpOCV7OCQfZVJuxyGLLW+zSh7iCc6xVpapSbhIkgNyO3fYjSMXIZigmxM8Lo+yjTxp4JYUHGQ1l3kCR67B9bec52EOsosx+qR7iNoxejjJ45TZgssPb7BWHuRxbrCyPrnPkuQwl5nmEdxTo4a5wDGGOctG3F/DuorgECMMMA0sA+a4xRkqHCFPng7pug5OMsclknUZQDLOZVJcIssoM8A0cIMyAyxChR3OMcgdBhliglSd1Y9RZYIxikzgfqqm6v+bY6qujNyqTfLWqe8w8cVLJBc/zcIdz7Nmzy6e+eRTpKfuMH7o64zs/zz2tStkZquNDasKSEoNMSAMUVZAzAY97FExKF0t8mrWxWx96+2cA2NzVcoX+um/+HUOfuEIycVLWLVjJc8+u5F/+Ml/TvfUSQYOfYtb+09y59oUo7MOZUe1qcTsoClmDgcIpqYg5IrMUw2RWXebq2C+sMjsbZqIimTuBKbiNawlPax88v2sfellUgv7GD59mc/90ZcZOfMN0tMXWOs4LMf7FTB1nvMYBUrM1NvN4Qe/LDP1I81MIrOr/EzXX1ka3ZwrkyJvz5Hri/P07j4ef3ktfWuXcelalc996Qt86cLnGLZ2g1wMzJDlFI9xlO11an1bwmGOcIkncFgH1LC5yDUO8ChjLMQ9MfA4FzjOOCUeqrd9ixEOUeQqa+qT/QK3OYbDBBJkHzDGLGfJcBlZd6ReR3CFJHfoQVHuIv0sYoA+ZukChoBhhplkmBpdgKDKOONMMFHfgT0DzDDLHDNUmQXAqUdt5alQqDuoy1QoU8Kpb2SWVKhQpYx77nYM99xC94RCdZB6DQeHGrJ+gqE6UM3R/uUg6214+eD3aEVdiUph5a2Zr1L9yyRDe3m6fB7t68MWxDo6qY3HyN8c5cbNN7nxzf3EeyxWb8vy0T2L+Qf/02/QV7vGnRNHuLjvEmcvTDE4WWWuajLF/GJ2EJ4qKAali9lBf1uetCZm26h9Yi7wVdXeNpmEUpXSzZtcunmSy98c5Js9U3xwWw8/uWc17/+fPoqs1Th1YpBv7bvJyIVxxiZzyKpq0yxm67vXgqkJCKlIZv+ZzOZI5gI0/Fn6CYZJZutMygHSNqzoibFzxxrWvfJT2Bt/gn23HN74xlv0H75OZXQYqkO4ZwbGmKmbc+pIMhWrnKFaB6E5XGhJ4MFUB7NMMFs/Sk0BZ7ZRtsx0A4Q63RdtZbBzy9m8bRW/9vJKPrgjhZi4yOXvneSv/9NhzgyWuVATVBdvhLhaSu6ycerLyZuS3pmG+hX9lBrRWG5hV354CUQvN5P3SC8V9S+TEO75nIIhAeGSzWJ3zIvd5CAP39ccVJqlsPPcPI6trjTvU3RIQDjZ2R6Y64VSnZFUilSGx7g8fJ1P/+AG+zsl71vfxXPPLOfDv/EcH870cPR8kb/cO8jrpwpMjXZCOYlJzA56xZSYXa7bCncnZisGlfDVLCtTzAwPcnh4gKEfnGFZp83KDd2se/phfu43fpmX01t57UKeN966ya3Tg5RHx6HsEoSgmK1O2QqmJiDkRTLrIrMOMx2YRGYlULsic14Uiecstm/p4bmX1rN+93pGZxJ85c3j/PkffZWrA2lkaSmu50kJXB1USDdEZgUzajuFEplrDTake9g6KZFsuNw78bOhDhxmmEaKOUTaJrNmE+ve9zCPPbOGlYxxY9/n+F//xZ9hXRsmW5RY0n2qrk7BUFwd9K1SKy+Te084nC44mf3f4Pksy/Y8bcG2VL9MoKA/RXsxQNF98nvbwmk+UKGDo6m98Kg1Gz1peBpzCdPzBUHI29XX+GNZrgNjWGckeWCGeK1EeUJy7vAwg0eHSWSOk1rZyYInHuflj/88j/7Goxy5VeL4vusMHL1IaeAisljEknmyyMi4omqIQXmbR6KOGWkpZpMnjRslbddgaqLG8KExvnXkewxn9sGqnax4/JM8+YkP8uxvLmL81h1u7H2LgaPfpDx4i2wRUjJaD4KmIKQzGldk1iOoFSBkTSKzSCGSC1i8uo9PPL+Mn392CQvjw1w/cJQ//9df49SVGS7mJSNSIFmGCxUdeAq7EplnmK2TfwV+usicZwZ86o9btkaOafKNrafqAI8csDAhSC3tZdnTP8Hy932cWu8ibpy8ydd+7ytMnH0DZ+YIS5xxNgBLVbtx6Ow0R6CEv5SmK80C9VQ95viWVpwmfHezRWPupbraHlcxmSKmxdzOleZt+gE0XMorEUzRwQSmHvhLRY+wP74pDHX+gAMHUmnI5mDOi4MWzNU/7e6clA5MzkrunJvi6vnXGP3LUySXPsfiXa+w5pnHefLnX8Aau8PIgW8zdPAvSdw4R26uStwxidnBcAAlZuebitnhvW0eROkHtSkgqQB5B0ZmK0ydvcHlc19G/OURUktXs3LXOp7a8xC/9anddIwe487BrzFw4DjjN6eYmTOPbRMQ0uN+MsxRNm2Y8EcyxyWJxctY8eQjPPrSVrYttimefp0//MyfUjh9gdR0lURdhFMxQ67IrOBCPaqrKRVIMKNtTNVF5hy1+u98KZFZ9crlSnOMM4P7U4adNizptXl011LWvf99xNa9yGvX4nz5y69y7ego1bEi1GZxIbaDaaaYotbYS9bRCXN2lEnTPMDOna6ijYPlm11VeVFsIsxgmi1SGbgnqvbo3WvNoSnKZGnNvFQvZOBquP+mJzLdE80qo9SdYKlmIaNSK+MBkPu3gxAS2dkBhVFw3CUfqx/5YfKKzUpBqWhTujbE9LXvcumrh4kvyLBqezcf2LOE3/7Ab9NbOsfQ0X1c3XeBK5emGJt2yNfcnzCMisy26r9yoovZuinmaVBBiMqHGJQKQXSPcqsfmiaTyGKNwrUbXLx2hktfG+XVvmk+sL2LTzy7io9/4JM4xTnOHu/HlJqAkL71NEeeafI4jf3viif12CB7MvTteJz1r3yK7MatDN6a4NCrb/PVw69RGj1IV/U263F/cMYfIthMZO6si8zujrFugjAD48xRbZRVsdludE/ZykJHia1bevjQy6vZuHMxUxNVXv/eKT7/n77JgUEol9cCq+q1e+GJBUYbZwV1pyCdVZOs+YIwL77wZPdPdDPk6IZTVIoOfAzeJwPgEWVCmfoeNOLw3RPN4KAZBPjrir7ilW7G0EypGRCHDcZm96m9Y/6RMz+bC0DqzKEaJGzoSMKUGwGUotpQbdQWT8VICqENqyUqgyNcGdzLp9+4zg86C/zEph5eemY5H//HL0A8w/Gzs3xpbz/jZ+YYH+sJbFh1a44bxOxwOICyNcAfDuAYfW2u40cPB/D8bbI8xcTgdfYNlhl84yBrumw2bOplw1NbQiMMTUFIEIxkViJzl4DunGDrph42vPwUix79EKdnF/PFN89w/DPfIn97Bkqu/QsZ8sQbB4+pmCHlJTOLzB7UzDLJTH1zaSZQNk2JGf3neUQaUr10r1nMy+/7GL/0TB/LxRVuv/0m/+1fvsb1a3PcKsCYBEG83j9lznnhieqsoDkhyXaBEFGMIsrUAn3pBiEgbIp4Czr4dQ23GTaGzF/5VoZVq11nOjOJqieK15i2fDYDq6j8qBImz5e/B+YSwacNc78oVtmKZwXbEo2fx6m5IJQvIypzZHGMms4sUNVCgT0vkwsGVnWG0niZU/vzDB28TWdO0L2mi8VP7uTDn/olnujezd5rJQ7uvcHA8RuU79yAchHkHCmqPp6jA0mpIWYHQx+9cACzUqSL2UF/W55kXaGyqzA1VuPQ2yO8fmCEn/m/wuPVBISU+lOPZBY5askqK1Z18NHnV/PYs2uwE0kOHhzkD//N/8brl2eZzi8FuRLoQ49G1kVmPZJZicxTjeMySvj3oXVSJMU0c43wQrURzjXJHGaZQSbKJJcsZunTT7P5xYdY2Rcnf3Iv/8fvf5bq2YMsnCnT63gHtLmWc5VSw0umb+Nwe5VnFCtbIZEy8QJCV/Tl2M5yavbNjyoVPJY1/J32+hSutVV/2gGX+Zhj5nb99YXrCiazeWuq0fwpCCf949Cqh2EOGb7Ha888B2pgS+iMYY9Fm2JzCO30xTBEpbQYHxyYnJZcOTnJzVPfY+C/HiWx/FkWP/oRNr/0DE/+8oepDN3hztuvc+fwF4jdGiVXqJBwwmJ2LQQk3iZZZYoF++vf2xbe4hEMB1C+toL5h0yagVBd/YnnSC/ezO4nn+WXX1rNrkUzTJzdxzf++C0unx7j1pT7e1vuAskAC/CffphD0sGMtjFVxQwpkyxJkUJIZFbbOHJMM8csbriaEpk7bdjQm+HhXU+y+pW/D+t2cen6NCf+5hDfPXqQytgJRPUsSzTZTY+gzvnAT9/GUY+CsjNkO6eJXiBqmkWJsn4mFMxt9TX1J//C0a+LwL9NfYoyPtpjQnrrwT6F/yUN+TLwJzq1Z9oF/xWEFPPIRoNsuB7v7yATMo2FNICVv08OsWyMzjlBpugZLw6ee91d1MpQi9fLKTF7NtIrNiNhpiBxLg8ycuXbnP7yURILe1j5yCLet2c5v/2xf8qC2RMMHXmDm2+fo//qNLMzDoWaC3yyRWS2zqA8eIqKkvbCAXTXPFqtphQJQrG+DhbseJKtrzzGxk2LsG5f4K+/+af8yeFX6RiZpq/q9zp1IJltHJehxwy5/qwio8zUDx7LERSZVSSz7s8KiswVShYsyQk2buli88vbWbBrD+cmF/FfvneAfb//deYGBJRt1A9CSzqZYZIZnMZZQbo5N0KBIlP1dtUXyGV/6Y4e4vE5ZP1ot7AoK0NX1H2mJdf8ixtF61vzp2bfaT+H8t/XnAX4WZW5JL4r5qdoBjvBvHD/o9SfZtwqeCUMNzL0L73U3Rhf0SDr/csSsLgrTrZUICHdHihW4R6Zp+sresDfXOP8an1R+xlUHUhkHEplyv03uNJ/kKvfvskbPVN8eEsPH9qzgmf+6ctILE6eHOcre28zeH6K2YnueqChAj5XdnbFbO8AMz88BcVs/1mScU3M9v8okjlFgtA//IP/mdszcPrNsxz47Bcp3D6GLJ2jmxk24B3v5W2YgDHydX1HQY1ukmWZ1kRmPbywE5jwicxZr6zohlQvy9fE+cQLq3h2zxLiosypt2/x2f/1M7x2dYbLhRyO3ACsxjvzxzPnVMyQghllzrlnBU3hakNqi64F8Qx2rqPJ0jYv7/A97SwXc2rmB2sNeM3O01FX2jW12tNq2gWGZlejR01Pzdz44acJt+N/tlZ9N98TbsvB84B6ucJ3TyYl6M2APedfmK5fVvdfCfTtrLop5leKgmaRzkjmoDpJYWSS4yMTjOy7ysKcxeJ1nSx76mE+8Xd/iWdzO/nu5RJ73+rn9skByiNDUC6BdH9DLSoyu2A8v7r13rZ5g9Bf/Kv/k9GrJWTeBlmpV5cjT4yZ+inTCir04zJKxuMyzCKzvo0jRYnZhkbTBfEOEks3suWp5/j4i6t4asEE0ye/wRf+4AcMnx1lcloy5Ljtx5nT2tU3l3RQJduIGeoK9KgLmGKmflaQAi+gqwtpDxM0dlpFzoS/3mb+EC5pzjfxrGhPm9eD5l9lM5+J6jcE6wn2PwqICVwJc5FWcTkYnqY9aG+m1QX7pZeKvscM3/rzB+Pg/QCk7unpAqcItZq7ZGdR2y2iuU4mIGZ78dNBBqX8bS4YxDRh2arB5JTDrWOTDJ74Abf/9BBi5VMsfewTPPyR53ni7y1k9vYdBt7+PoOHvwy3b5IrVhobVr0fGdKPnQ2aYv69bWF4MqdIEBo5tR/Xfd2LbsRUyDDDVCiS2Y1Glkw1jstQIYae+lPUIpkVk/LK1sjbeeK9aRbsfIK1rzzLkvWLqNy4xle++kU+e+Tz9I7dZlXVVZ384FehxBTe6Ycx9OPQ5hhvbOMIgp/rYZvEVZxSkO6EbIzmYqP7R0226K+7ecmYPV/+JWkSuKMhwswCoq/IEMSZlqUpvxVwmAHNX5//bv3vVgGb0cDoF+c9YPTX0W6fwp+D5q3jA6BwDcpfZmHHIdsJoxOtTDEFJPkQz1Fg4DKoLGEx23/kh65BlYAZB0bnapTO99N/4evwV8dILlnKip0r2LNnA//dT/9P9EweZfjgNxk4cIrR69OMzkoKjorM1r14wXCAYkjZ8va2mWd+E2Fa31/lF5lNkcxqUXsis35chtrG0RGKZE5bsDRnsWrLGpa9/Atkdn6Mc1MJDr95hUN/8FVKAxegfAVRJ3N9eJzF72GbwWmYgurUExem1DYOJXurPb+dQCcOs0wjmQbRCV0ZYC5yyor6ZsvglzmanZhTkGOZ9mmZag6GypkWfLhPMlCf6V+t1Y1mV5o/rXfP3V+tXxHhbTDNQD38Lz/MK2ajwjCsAIMRWFhC1PPcg9ZiWAjhRgOBjU2cmIgRo/75EzYJEsREwt0YKmrEyBAXaeLE6EnWyCMozzjMVZubYspDpZa7HleUD8YV4TESmK0fUGMOB2jE+MgElCqUblznyo1jXP3GAN/pneAjD3XxsWeW8xP//IPIaoUzx4d4dd9tBi5OwFQnVFXNoPvbUnVTTMGpHg5Qjti80QSEVOxOUGTupKCJzCrCRi3qsMjsN8nmGGNWVBEpWL86w84XVrNuzw6m7eV8af8gf/Kv/gW3rtrIQjfIVL0vWVwP21SkyOyCn2pXP2coS40sM4ZtHErLGlVaVi4GyUT9NZkme/NFGvWv0FWh/hW9rKNUm6CL3rfUhFpYViPPXSbuQvKWmY0tYvUD2RxsICZsYsQRxJAihkWChEiQIE5C1LARpEScNCniIk1NpBFARmTJiSwdlOkQkqKI0S266BDdFEQPCOgQ0ywQC1koiiy0qqRFjAmxhGGxjAlrGVKkSVs2a8Qka6wSK60CjrAQVi95sZmb1mYqVh9JMc0ay2aHZbHRGiFpSZZaPaSsh+izdjJrLSFuV1lmLWWX1ctm+xYdVpkZO8dqayNr7R2MWCvBjrPIGuZhazNbrAsssqapWCketdfxmPUw1631FK0MfdYsW+2rPGSdZ5F1B2FbTForuGQ/zCVrLZNWB1m7wiZrmC32JZZa10haZWasRQyIhzhvrWHQ6sMWsNYaZ5u4wQpxkYwYp1CKcfDEHT63t58fnMozPZaDsuIOnmStm2LgBxLP76sgSnEdzxQLG0zB86v9ECUrE8wM3ebQ0C1G3jzNyk6LVRu7Wf30Nn7uH/wSL6a28c3zJd546zb9p0eojE3VN6zmEfj3tgX1K1fMDqdIEIpTqP/aevNI5jDMUDd+wpHMIrGAniVxXnlqMT/74nKWLyhz++Q1Xv3D7/D9s5Mcma5xy+lCsgkPKjzjSW3jyGs98mKGqvUDy2bxfrzHY0PKJFM9svHMua6Yw1x3iuqipTjxTmzh0C166RVd9IhZkkJSslIsEYuZEYspiUVYokKfNcdKMcJKa5BuUSMnksxZaylYG5gS6xGWTbeVZrtVZptIs8gqUrQSpK3lxKxHGbQ3UbNy5Kxxtlid7LQXsMqaQFgWq8QiFto7uGw9RN5aSNoqsM5az05rHevt26SsKpNWHw/Z2zhnPcy4vYiYJVlpj/CI/STrrMt02HmKdge3rc2ct7dyy1qGIxIstibZbt1gvXWBBdYINSvJiLWey2Ibl60VzFkpeq0yW8VtNlkX6bFuYVmSWbGCG9ZDXLBWMGplyYgqm6xxNoirLBSXSJAnLxYyJLZxUazkBj0IYA1TbOEmSzlPkhGqdDAmN3GRjVyimwIWSyiyhX5WynN0cAsHmzHWcl1u5KxcxIRM0SELbJZDrJYX6HUuYzllpp3FbHe2cNZZyYCTIebUWOVsZItcxhLnAglnkrzTSbezkaSznmvOIioSFtdSrHJKLHBm6HDiFJ04WSdHyklg1xyEU6FcKTBXnGPKmSBRG8dxagzValxxMlysWUw4ncRreSacy8w6J1jj3CDpFBmq5TjtXOe0s40xZylSVulxbvCQc5xNtUt0OXlmnBiFhVv4iU/+Ik/95sMcv1ng+N4rDBw7T3HwArKYx5ZmIJlDF7MVCPn9bYmAh0oHA5dB6RqUn0Ep4LNrMDHhMHRwnG8cfouhzEFqq3ey9Imf5fGf/hBP/dZCxm4M0b9vH3eOfoPKnSt0FCEtTZHZog5P8wChLBUmQ8F8etzPZFOdZVaZZHYPVs9iFu96jD2vrOeFDUlSN97gG1/9K8aPXKI6VqFUdVtwXfd5LYhQSd9qD5vnYSvjP1bE87BN09B3GlCToxwIekxbsKDDYv22pfzqyx+i98lfoD+3gUkSdIsqm8UIG7lAl7iCLSrMieXcZivnxTIGyJGgxgbGWS9vsIBz9d/r6GVYbuG8XMU1p4uahJVyhs3yGsucs6TkEFWZYtTZwDm5kQtyITNOjAVyjs1yC6vlJnqd6ziOZJWznEVyC4ucZYw6OVKywPpaio0OLKqliNUKxJ0epmpLGHG6KNfS4NSIOTFkTeJUq1ScPIWaZNwZ4Y6zgAEnQblmM+3cwXLOUXVOM+qMUXIEN2oDnHDGuVpbS97JknImOF87z3bnBMudIYRT47bTyTFnKxechxqnGC5yLvCIc5RNzm0yssKQk+CkXMspZwfTciXSccjK6zzkHOUheZU+p8yMtDgnF3LU2cm43EhNpojLQdbKY+yU51kpC1QlXJZZjsjtDMjt1OhFyAkWytPs4iQb5AwJCbexOSbXcYWdVOVyoExaXuRhjvGQHKUbyRiC03Ihp9lFiXVADFveZD3H2MEtluIemneBNMd5hGm21mfJCIs5xS7Os1bWEMB1bI6xkUEeARbhmj3nucVJNtf3aA0BJ7jJFcZwWA04xLjGDMeYYZg+XLHjdHmAC392gtSSp1my60U27HmM537hRazRAQYPvMrQgS8Qu3mZTN49+MwcV6RHOiv1JVrM9jMoZTT5GVSw1hIw68Cd2QoTZ25w8eyX4XPHSS1dw4rd63hizzae/IWddI8eYnj/Vxg6eJyZmzPM5CUlR4/Mzs4PhLwf/puhccC7trWhyDDTESJzp+Xg5KBny2ZWv/xTLNy5lfL0LOe/9xav/8EXqQx8n1XlOdbiF5k7cU8wKjXMqi68nyNUZwW5HraCBjPqWBHPwzaHF43kDniNLLMij5MWrFnXwXPvW83mpzYxJ7v41sFh/uL3P8PV2iZKshvbmWKZc4ad8hjrnDHissZtJ8VRuZEL8hHyzjKELNItL/KIPMpWOUiHrDEqbU7J5ZySu5iTa5FSkJQ32MxRdsjrLJY15iScp5OjcgcTbEPKHBZDLJMn2MU51soSANdkgqNs5jaPIOUiYIZOzrGTE2yWs6SBOwhOsILLchc1VgI14lxlK8d4mBF6gSngrOzmFDspsRH3FMPbnOYEO7jOctxfTbtMkmP0M8VD9XEf4zqnmeI86+q/rXkTi+PMcpsysBhkgREuYHMOh1lywDBwmSq3yFGjBsA0N+ngFt2MU64vhDs4jHKHAl1AmiKjjDHOOLPkcKgCU8wywxRlputzb5Y8eeYoksehBhSQFClSpYg6arhKpX4Am/tsFSRVqvWdj27cl6RGTTtszT0lyj0hSj9aTT9sTQD+o9c8Kdqsw8nAfTRyHEDEUzhWjqmrA0xd/TYXvrqXRF+addt7+OCzy/ntD/4OXcWLDB49wMW3z3Pp0hQj0zXmaiZTzOM6dksxWzfFLLzj6mdJGhiUt7etDnwyBYUqxavXuXz1NFe+Msy3+yb54MOd/PSeZXzyQz+FU5zh3NHbfHdfP4OXp6hNJ6GWw5QiQcjVSgotIpnzjUjmlHA3ey5Z3clHXtjDwj2/yBV7Ha/tH+D13/1vzF65DYVBkGMI4o0QQR1m3L3zsh5eqNpVZNRtV/ew5fCHNeZwmGvsyi/SOL410U3vsof50NML+aUXV7K6e4bbx0/yxf/4XY6dn+RWyuJcahtjCFzpe4oS1+iin1j9sM0BZhkgwzgL64JkiRojjDDGQgpUgAlggklmmay7/e36xpI5Zuov1w15L1KigPuz1jY1SpQoU6r/2gdAhRpVKrinOLmLp0aNan2BugtHGpaRg4P/FEPHsHCkceEQ+a/mXq0oYdpcTzvSeLieZo6A4FW/989Ul/v/Qbe6uYXmffKX1J9EGMAqmETXQiikoCagXKA8eIfzg3u5+kY/b3bVeGlzL+97ZhU//dvvx7GzHD0zxRf23mL67CyT411QCR981kzMLoTCASQeg/JrUH54MoUDuNxMlieZHLzK24MlRr4L67tsNm7uZv0zW/jU7/wiL9sb+dqZIt/ZNxh6fmgBQtlIkdk1gOYYpxSv0bckyfNPLWbHS5tILVjKwdN5/vOn/x++d6ZEcXoxOIvxxG1lzk37RGbdnPNEZl39caGmVo/7Uc74OLoz3t2VX2EG7Cqxvl4W797O7le2sWttDnH1bf78i/+FyaMniI2XsGvgZCGZsozRNXezSKM2VwSntfmK0L64eu3mA0/1FtoHj+YwEFXy7usQjb/vD8Dcyxi0LmWOBWsWPWSGZ68ep/G33+9Wf7aYDV29MK4+NgVgBquapzBW4/i+PDf395PLCbrW9rLsycf4qb/zazzbtZ39V+c4tPcaA8evUhq6Xt+wOtsIFlRitt8Ui44rCp6+KPHHJJm9eP5wALsKk2M1Du4b4zv79zKWO0ht7VaWPPUpXvjFn8GUIkHIi2Q2iMx2J6ne9Ty+4yF+/ZWVPLkB5m6e5/D/v703D5LsuO87P/nqrq6uPqfnwpyYwUkCBECJGEAUAQIkJYqkRAVlWbZXa1nejV1fYTnWDocdYcuOjd3YiD1MSUsfu2FpJVkyJYokSIkixQOgyMF9Eedg7rOn77vrrpf7x6usl9errp4DGECdjCG63svjl5m/3ze/+cvjff01XnzhcV6bb/FmC+oMdyo7RHxNvnIyz3adzGoty3Qy6189NbnSOovdu4LUrDYPlAPYMZildMedHHrkbzBy173ML1Q5/vizfO83vk116imKjXPsI2QnMCiiy8qWugqzWWPGeYqhrv0aTb8jblJ+ybL787mynJPy6t1yZir9v/0chvXntXHKjQEtKR8ztforRF1PKjzxYqDyyxN6N2EEdIadgSKsrkEzchtHPp12FwzCEOZXJMd/NM/FV77F3O8/R2H3A+y876e485H7+fAvf5Lm1CSTT3+Hyef+hPTFFQaqTdKdA6P6qlh8YNX1FtlTsWQflL2hMmJQ+hGPBpEfaXKlyaUfnSJ85YuI332B//yrX8IOiSCk72ReZwVEDVEqUL7tdm776O186N7tbFs9xbNP/A7f+I/fIz25Qr4ef1kjOpulH+Mw91e3GGCZmsFo1H6j6NrYNdrdGxt1J3P0jbAV1lgnApKhPOw9MMhnHrqP3Q98ijPyIF95cpLHfv0LLJ9ZhNo6yHkgR5UcK1QpA+NlyHSGC3OsUwpoX0ZmHxd1lc/eZKji2IQ8ngi4LMcszUy5kdEIK4408uoNVG7tzNyV3PbGwN4bO20JfU/Uv7hV3JyT2aB/68RGzEufksX5JslkSmC3Sr911Oul2rIdfX9npAQzs6jPQ/uOhlaIDqyuV2D9xCXmTn6DV7/yFLltwxy4ezuPPLiHf/yz/5TB1deYfO77nHn6Tc6fXmF5NWQ9tHdmuwv3Re3Aqs5zkhlUvSuvzaCc7QAyj6y2nd6AHiBUAMoCJvIB4b6d7P3Jn2PHgx+llilw7uk3+b3/+XdZPf090pXXOCjrHCD6ILS+9B3tZFaMRi2bR4xGJjiZVdou+Hm8PyEl6tk6YzsLfOzITRx5+CADI2Ve/tE8v/9b/4E/f3ORhdVxCPcQOdXVFzVKtCmySpV6CoqljUd4nCcbjdM+o1FTLdlTQfV8kiSwTc49RpAkqV9uvHH8qZLi+U3NhdTewNgrn2QgTmrP5NbdCBxd2fuZjrm5CyueG+IJeBvymWhtuxodANWvwdCPTMTntvIgU1CvUr+4wLGLT3H8W5f4zkidT9w+xscf3MsD//SnacsUL70yx2NHLzD71gq1xSFkywckpjMb+mdQvu0A8YZKBXxFkuAmEYQO7sny4Q/dzL6PfpLVbQ/w9dcqfO8//TEzr88TrqxBuAgEtCmw0rnqfoj4a9TuTmZ3i2Gts7Bte36iqzYiJ3M8JctCKk92bB933HM3f+vR/fzEgZD1M8/yxFee5diLU5ybb3GuDU1Ep7HUKpnC6Gi5vsYSxeE2QdocdfszXf2NqaAQb9CPjcefs58JCY32+1Ju5Ex2gcqV2Q96bpwYPJMh0GwDUx6cJzqc+Opm56VA1lc/+7rciM8k527LLrrlJcfR20n1ix+s3M8VuW3hB7yuHoh2tLJTr1EIQ+NoqHlWTM0X3IvPRGuFymyVF2aXuHj0FKODARM3j7Dn/nv53K/+HT4ycCffP77O00fPcemVCzRmL0Mz8iP13pmddEhWTcXaXngyz7apUwxuSAShf/j5T3PhXI2vfeNbfPH5/4+Tc2Vk6wCwgxhqBpEMstJZzK9pRalpVa67wmafYy91dzLrPCm+yzE6ld8KKgSDWUZuv4tbHvkx7rh7N8XFC/zgiT/kj3/rq+QvzzLciL9zHV0woF8rolbJAtSBjUy+SGFgzTqAoasJxhOcJ70Uyza3eFrX2wD9RtHLdP35JElqP/Gdre9Hnt61dp+4jml/ef3k7MrUq8Zuy/mfblYKX1lubWzfkRnHHJ4i7RBZwcBgmuKy6ZdRWxBjRuK7qSf6JpmCJ9mG+aWQMy/M89WXvs104Slye45w049/mns+/RF+4lfHWbt4iYtPPs7kC48hJqcYqLW714y4wOeHKJ1BudsedWe2muS5IRGE/p9/8nXOXG5wtq6O4LeIdvWM4HMyryQ4mQccJ3PGSLvmcTIXBGwvBIwd2Mvej/wi2498inkGeOOp4/zRr/82a2efQ1bfpCTnOUC8uhZPuqJPETW64Ke6NNr4WBwaRogKknbfyg4+74C5EOs+8TOhJDNxy8NJ4YvXP5hhvXe9O1dmjr2u++gFZvabXo5it516gXo/+bhy+TxqvfJy69eBE0+76+/9+QkkI4NZiuuCTEtatwpZUzGPT0fdZmgzqNUQltZbtI+dZ/Ktr/HsHz1Nfvt29n1gNx958DD/+Bf+BYNLLzH5zLe58MzrTJ9dZXY9pBpGVps8FYu2A+h3Zqttj9HU0Xf7ohsSQej82QYS/QKwSmfTmIKa+MulLYrdncxDxIwmWsvSV9hs74/ayRx9A340C3t35Ljlgf0cevjDNEbu5muvrPPVL/wnLr6xSnsVCJudxi9SI8MqdWM3UQ5100mrA0LrxEgMDAwS5Nf7Uiz/MdOYP8WGnDwm9kv7bQ+CmyrZ6Wym7Nfge0GJ+UY3GnvpWY8danGSxnwX0MwNf2gpzPL8Lezm3KuF3XguLOlPzSe92jxJivhN3MIxEDmn/0inBBNDkJ6Pfitzjw6AqqmYfjIrdg777zm0fDoyDbUatXOneOvccxz/xmW+NbbOJ+8c55MP7uFj//LTtJotfvTSFN948jyTx5cQy0PIdu+pWLIz24YoNySCUAvTUTxAswNC66gr6uMPJMY3GLpn2JWTWQGConWRgDI1RH4sw/337OBTjxxk/8Eyk2fn+e5XHufPXvwDXpyXVNs3AbqTOaKHLQqsUe/6lFLo0znZuVB2tVNmEF1vNzQITDsK6t8fshFQ+T5drOK4T3tPyfzlxVzFVOReMvV+gpNPkhklgaybu7v6F7dB0MnL3RjoX/nqdQekLley7EnAb8q1UTv5oUvJrfeL8MokcEsXFhOKD0nr0pUGgFUIG/Y+HXXDus51oqmYcma78NSLQa0jm4usTC3wzNQUF594jR1DKfYcHmH/A3fzS3/vV/lo9la+/eYaPzh6gUuvT9GcX4guPvPszAb94Ih9f7WS1w2JIKSuMVNYFt8VtEp8Niv2/tQ6S9+650elHaDdWenqTMmCHEFplInbD/HoI7/MZz4wxODii7zyxDd57AvHmZmsMd+IKpJBWKfjVZWjO00qrLDe8UdliflZBHX1jj+qc9Z/cBgyzU5n975vxqfo7uRLPU0ywCSASV452Rj49Nx9fgfXkE1mkgyy5pYAt279mK2bsy1Xb/dx73ay629L2nvK1usGJbMNkuNh/PJPuXHiuTrl9p+SMEAKwciIZH4G6tL6xpfxBTDFdaKL5f3w5GNQ8aRJXUKWA2jD/EKbi8/M8fXnvsvswFFS+36Mm378sxz5hZ8m/T+Ms3B2kvNH/5Kpl75Ba+ospXr0hdW0kavPmQ2bBiFl1Pp1GVmq1Iwpmb6TucQK1a6T2d7JvCiqtPNtBg/sY/9HPsqhB+6kJBpMPfU9/uW/+XeEZ15gR7XJNmkyKcVo/E7mIvXOvYr6eX3V5EVCaspBnR6EwSL21kQzuEZjTkVc1dZV0VVHe4RPcoQnGXPvOMlw0n8+/TAT0+fVu7wkg/eVl2TI+nTMfNrrSXIdr1V7ujJtVF6yvkRvzIFQPQuBdB7SBahV1BFytbqrYEaBUAQkaqkoZbyxndl+n46+1qY2KK6EML3aoPraWU69/mX4w2co7NrD/nsP8sBP3sWH/ua9lGafZ/LpP+Pys6+yeH6V5aqkFm50zYgbEkGoQmzUytk7QKsDQvYWQ/9O5hRQzsKdO8t85MhH2fPQL7MyepjnX5niiS88xuIbrxKunoTwXGf7Ynw/kQKhiFXVOpseh4lHgqhT2uSdKZmedpkaLSowXIRUPDVQna663x0lk1ZzYsgRuNOMJEPdyCB0pewNJ719UL7axGOuDakbTX38cut8Rmjl+WEiXh3zsxc/WOHkpVrIV7+kSVM/MKE753XmlbSJ1GVnAojuctJL72e9THQdAeqX7OyjlsDACLQaUG3ZUzGIuU6FLM0uxPinYgWS1tsKHYhyD2JoDEpmodqgeuoUb55+iWOPzfKN8TU++f5RfvbBvfzcJw/RrK7z2gsX+c5TF5k8tYhcKULbvq+ohi8kgpDy/JgHJuhc4GE7mSMHdXSDYYt6CoZH09x9zzbe/+jdlG9+Py+cEfz2Y/+VZ15Ypjqfh3aBeH91iVrnA4m6k1mVW6DV+d69cjIHxPBYpMoqFW1KFhAftc3RopUHigV6UWebBeij0kaTL3NXkH8K4X9C4nsXBpNgor+y+pqOCfepf98OdkqrLTXTErLzWz1V7tjoSjV1EVuAIE2KlEgRdE66p0mREWlSpAlJI0SaDJnOZWs1skKSI0Ne5MmRpyHyQEhRFBkQAwyINQZoI0WashhiSAwhxBCIDAXRZFyMMS7WGRd1miJFPRhlWewkJXYRBiVyYpC9QZP9osmuYJWUEJSCMgS3UAwOUROjZIM6O4NBbg3y7BOzFIM2y8Ego8EBJoJbWAl2kAoE48EMtwS7OJi6xFBQpxYUuJTaw63BrcymdiKDLMOpVQ6lLnIgOMtYahkZZJislPjz587zzBsrrC7moKm+XxG7rPPaVAw2morFEBVozuxkBmWtt8kqsrHI0uQkRydPc/G7z7NvOMXNt45x6MH38bd+7Vf4WHCQb7y2xvd+eIlLby7QXFyHpnKvuyERhBTv0KdGZSI/S8VwMne8P8EgudJubrs9xy9/9BAfumeE5tIsLzzxFo9/4Qc8M1nhRCNDg71ETuY0+rSq1flAosrVZjSR52edmCupDYlFGp0pmQIwtVyvro9tDZepmzsAMccldc1nPCIKBIjAiB0QxOYlojsKg+jeQgQhgRCkIlNCkAKRIk2ajMiQJk2aJlIIsuTIiRxpcoQiT5o6BVGkKAoUkQQCSqLAIIMUxSAtUSYQOYbFMCNilBEhKYqQQGRZFhOsiAkqwQRCCMoCdgdr7BaCUdGgGmRA7KAVHGBO7EcGBQbEKAeCFLcFBXYEaxCkGA/GGAhu5VJwM82gTC6osTfYwa3Bdnan5sgGkqVgmP2pw5wNDrIajJMNQnYGMxwO7mBvMEkpaFBNlbgU7OdccIj5YAekMowHSxxKnWd/cIFyapV2kGc+dRPng5uZTG2nmcoxHNQ4mJrlpuA8I8EcgQhYCXYxHeznQrCD1WCAAdFib7DAPnGJ8WCKjGhSDcaYEvu4GOxhXgyQDiS7xBr7gknGxEWywRoNMchysI9LbOcyZVoiYIIqe8U8Y+ICReYIZZYVdjMpb+IiI1RkmjJNbmKG3fI8A0yBDFljgsvyJs4zzoLMk6PBbrnIDnmJofA8KVmlIoeYlXs5J7cxFQ4g2yET4Qp7wguMh+fIhss0wjx72ruYCPdwKRyhHgYMhUvcFObYFQpK4RzNUNAKt/ELd/wUHy/t56WTC7xw9E0u/uhNqjOnkY0agax1p2JqOhXf6awYVNK+ongqlry8rt8WHTOofAeighbMz7WZnpvhG099j4XSUYKDd7P7/s/x8C9/jnZ5jMsnL3H26FPMvPI9L9YkgpDu+VHbC6OdzG0qylEsGpAvU9p/gPd/5DP81IN7OCQuMvX0H/Ob//YrrJxeol6VLEu1d6ip7d1RS3eR10kywHpnPUtnNLmuDI3OSTOdK6kpWYH1zpRM3ZqYz8LhXUP8+N33MjtyNzPBPlrBAKXUGgeCQ9wSnGFHaokgCFgIxrkrdQsXgv1UUkPkU032BLMcTp1lR+oyuaBFJTXCVHCQ88E+FoJR0oFgZ7DEgWCSXcElBoMKjaDEbLCXC8F+ZoJthEGa8aDCgWCSm4ILDKSWkEGW5eAmJoN9XAzGqAY5hkSDA2KRHeISQ8FlAiGpiB3Min2cZxuLYoA8bW5iib3iEqNcIiWqNBhhhj1cELuYooRAsl2ssYcpxjhPjkWaFFiSe5iUOzhPmZpMMUqVPeEcE/IcxXAaKWEl3M5FuYdz4TaWwzQF2WR3OM1ueY7h8BJC1lkOR5iUezgbTjAbDhCETXaEO9gtRxgLR8iEq1TCIkH7JhrtbRCWaLZhIMyRaWegDa1mm0a7xkq4wly4wEw7QzXMsBQu0QrPUW2fYjScpR2GzITnOBVOcjbczUo4QCassKN9kQPhcbaHl0m3GyyGRU6GezkZHmQ5HIGwxXB4iYPhcfaGFxgIa6zINGfCnRwPb2Ze7qAdpijKGfaHJzggzzAq16mHggtyhLfkYabkHlphgbRcYpc8zWF5gh1yFaRkShY4Lg9wQR6kwQhCVhiV5zks32IPC+RlyIJMc4rdnJKHqTIBMqTIZW6WxznAZYYIWZOCs4xxnFtYkzchyZJmjpvkSQ5xlnGatICLDHKyuQcKh9h330Pc94kH+OTf/jT1y+c5+9Q3ufj8nyIvniVXbRHImOdU0Z3ZikqYQFKwGJT+VYz444bu4RHlzFYMSuW6GsLkSp35l0/wox99EfG7z1C86RB7P3grRz7xQT7wK0c2D0K6k1nfBb2aaZLdOcJN9z/KwY/+JANjZWZfeYPf/sIXmX/jzyivXmRfGN07p7Y1KifzWverpypnxVkGqJNhrcNolE9dpS0QdnYi6fuUVNpoSlZPh5THcjxw3x7uf+Qexg4cZjY4wCX2cC4cZi3MMBhW2NPex85wN4PhZWQ7ZDkcJRfuJdfeyVJYIB3W2Ra2GWwvUwjXSIdVqmGKVqtNLayx3l4nDNukwjny4SRheJZCe5X1dpZL4TIn2qtMheM024JSuMiZ9kn2hacYDpdphHChPc7x8AAXw5uohgVy4TK7wtMcDE+wXc5C2GYmHOS4PMCZcD/r4TAirDEuz3M4PMZN4RR52WQxzHJS3sSJ8DArcjtSSgbkJAfDtzgozzMs66zLgHNyjGPyMPNyD22ZIyvnuUme5DCnmJBV2hImGeAteTOX5QHaDCLkOuOc4RZ5gt2skJEwS5qTci/nOESTcZBNBrjEIY6zn1lKUrKC4AwTnOQwVbkLCMgwwz5OcjMXGSX6QMIFBjkhD7PEXqCAYImdnOIQZ9lBtEdtiiwnOMg0B5AMARWGOc9hTnITa2SBBQJOcZnzzNNiG8g2eSZZ5wSrzDHY0eOzrHAS2dlSmyLFHIJzpJmkQvRl4EnqTFFiqTuFWSbHHKMskqWBgM5NUSuss4Ik+tDmOmusU2GdJm2gQkiVGg2qnSE1pEmdBg0atJ2L1mRn1SikSUirc9maujMqpCXSLJ2/zNyJr/LCl/+CgYkyt969i59+8CD/6LP/nMzKCc489yRvPv0mJ08vsrDWphLqzmzll9H3FdUMT5EOTxGD6rUzu2E4wtXBkUoHopQfSVYarB8/wZsnXuXYnyzxZ9sq/NrPv9Q/CK0RdPf9FIBcCvaOZrj7nsMcePSvER58mKfP1Tn62BNMvniK1vwlaF3qiCRYQ3Z9SvqyeYZ6x7+j72SOPDhtbd9PZ2ePBjOwQpV2Z8Gyu0oWFMiVd3HXHbfxNx+5nQfvGqc6d57nH3+eH/32NzjVyHKcQ8zLfYQUCeQSOznNYU6yU9YQSKbIcYL9XJI302YEqDHEeQ5zgj1yiTywSMBpdnGGQzSZAELycoqDnGA/M5SJ1u/OMsYpDlNhN5AhxRx7OMkhzjNOdLffRYqcYJIF9ndqusokp1nmNLuokZIwQ5oTVLhEDcko0GCZ8wScocky0Tqf4CKSKfI0On6UCtMMMEOJJZpIqh1DXWaxc3FnnibLrLLKChUKtAiBdapUqdCg0um1Kg3q1GhQ6xhFgxZNmrS7dxa2aNOkRZtWx5RaSNpEl6up3Wayc/1a2DUs5UdTHjd1IVvkjUve3GA6r5M9XL6Uok9XNVqKOI7uYveV58/HzQt8pes1NnMQgBAChkZgpg71ddYvzPDihad57VtzfH0kxU/evoOHHjzEr/yzz9GQWZ770RRfffI0Tx5bZmWpCC0bSCpkNnRm6xM1/1TMztVdFetMEGUNWV9g4eI5p3WgBwjVybMeVEiXUtx52zBHHjnE3ntuZWo5z5eeeIY/+sJXmJzMIxvjRFMriVpHi3YyNxyYUTuZYxBS+wjUtsgBqh3vj+35iRqsFe1EEg1EIcvwwcPc9dA9PHjkEBPhPGePfplv/6svs3J2mnQ7pLwd6sEADeqd27BTtLtXf0amFPnt253LPludJm0REt1ZqJ74r/+MnuhPTZWMndz6FzqjoCtf2H3icwvLhDgYT8yVKD13uk/Mp74rRlyjMPd/22WqJ/58Yrn9sru1Tl4h7LW7yHyavDSgx0kCKjypfKfo7V+b21Plpoo0xN5D3d2bls9BUcD6CgpIgmaVlRnJMzOrvPnDEwwOppk4tJ0DR47wN/7u/8hPF/fzzFsLPHv0LS6+coLa3MXORsPIme0Dkmg7QGxxGzmzFTwlbweIvw+SpYEvJILQTbf/GH/tJ3fz2Qd3MJya49TTr/C7//YrvHh6jbeqkhmZRbKXeAOV6WRe64CQvl0pdjJXOk7mMuZ6VpEGWdY6nxNSnh+VdigbMLprgpsf+BS3PPQJMsOjnH75TX7vN36PmTd/QHvtJONhnXFg33jsV/Yvv8cn1s19sS6UJCupT7GkN44dz3eswY3jK2ujjYhJJ7rjutkGqCSwj6X4a2Hm5c/dXDL3G7xd4xg84hbxLYcnyeXPvR/oSo7j9u9GB2zU5g1T9jgkbwmQ2lszRaDY4tAA1BahXQOq5JDx5wfbMLvU4uTzl3jsxS+xVnycoT0fYt+Pf4z7f/ajjPzdz7F64Rynn/wWF1/8BmKyQr7WIiWjkuMFf307gIKHeCp2ZTuz4+0AvpAIQn//3/6vVF75Bv/hP3yR9TdOk15pI8Oo0AjrmtE1ql2ocZ3Ma4QGzKhpVZZ6gpM5wudKZ+ZeBLJp2DGW5f57D3PHo58kt+8IR0+v860vfY0zL52hsbAE7RXU9zcq1AkKkC+qK83tncCxMevmr67gkF01so1LBZ8iR0ZngoK7z8QPQn6AMcsyOY29bSCOI7px9N3JOPFcIzWNa3M7j/3m77aVmU/v6RH42sEnk91ToQWButy+vJKOpeiDUe8NDv0wL70ss//cfOx26KbKBDCYg6UaKRpdp7K6YqS7NB/C+lqL9TdPM3nsSzz9xW8zsGOMW+7Zy8ceeB9HfvE+0vOvc/bZv+TEM69z/twya50Dq7XuviJ762Pyzuzka0bi9TblzPaFRBD613//X9FaeIFtrUX2EzmZ9bug1XUZkZNZTZ5MJ7NasTLXsmwns9r3ozxHRerBGpnBgLvv2M7HHr2TW+66mZn5Bn/2+LN89fN/wMkpSdjQv8WqJnx5mqJCeTgE4Tdmgat8V65YruG47yNo8gOMq47mpMrd4pcMaBGv84OnbfBKgl5tEO+R7jVlE5oE6qn5JKmFzSc2w4GNaxw/8fWWfYxYtWrMf30y9TpY7IY4nrvdVfcgxan93h89H39towGyDeU8ohKSbrS6iz7K5dwgAqF698LjLEiBrFVYO7vAi2ef5ZU/nePQmOSR9+3k0QcP8dGP/3Xq9ZDnXrrInz55msUTi9SXS9BW8GZOxZQzW/Ec/YCt6cw2tz6q7QC+kHxsY2YdyLOGYB3ZdQWb12UoJ7NyX8dHSDd2Mtdod/f9ZEEEBIVhdhzcxSc/cojPHtlLObzMsSeP8s1/9fucOLvMZE0yIyHsTvLUNFCgtjcWSkXS2WrHoxN3YpLBR3/bLMBkC2bwA1AvE9FzjuOofUl6Xv2Pyn521pt9JY3B8SZLvxm5JunWyJTSjJPkf0lqmTi9G8c+LIqRyu4bfeqzcTslbTR1gdHcNe5vEZ15qfd23/nOEMauAl87CSEplnOk52T3rKQk/txyFWh1j1OlsVfFwuYqi1MNfji1wJtPvM5oOc3uW7Zz6MiP87f//j/gZ7L7+MEbczx59CSXXj9HfX46uvisszM7eSqm/Lr6doAYogodiPKFRBBS61nKyTyMuZM52cmsHy5dZZ12gpO5QZUKItumuHMnNz/4IT740D3sHU4x8/IT/O+/+Tssv/k62bUGuc40UPmGVql3VsnUwZIACBCpPKUhgaRmqNFGUx9Xafq5ggPvE/OQa6xuoVWePU7bZcluXq7cNkzqTEgfTeN4IrE80wVtPzVzd41ZNxHb1+GD0ySQdQ1el2njU3dJMm2ufzfKPc7FhlM7L9/EygVG3wFkvd98bS4IGRzIkV3PkKlGd4iGxJyjBsjuLRUuRGVodu243YLZhRZnn77E1579CisD36W8/8fZ/6FP8tAvfori6DDzZ85y6uh3ufDSN5HT8xTqIemOUKYzu/e+IkUZfKEHCEXTKuVkVjuZ9QMTppNZQU3sZG6S7Sz9xlO5DNEn3/eNDrHj3g9z+6O/SGn/7Zw6PcX3/+TbXHrxKLWFY6Tbl5iIdn6QIup6he85Wp1LYdW2xgjiUuUyIrXo5TKxvyfqTHNM3Fglozz6BTMznlmWHmxmYn/yBydlZzwkaYSPp0cbGfzGvg5ddt1oek21VIj9cIG3dd184hx6G7Pd5n6D7x9c3EHEBJe4nfRpst7m/pyT45heR73lJPYw5rvuQwCjQynCWhMhzalYo+t9VbZoQlQO2T2YruCpRvRljIXVOvOvnuTMa/+VJ/7Ldyjt2smt993MQw99kA/+rSME0y9z9pnvcua515k+v8JCNaQWRlwn2ZldMZzZvtADhCIPjr2T2TzDnuRkjmAqJN8FocEARgdT3H3Hdu5+5Ag77/owxxYK/PETT/Hcb/4Bq5fXoKE2nKdokaVCq3tlrO5xyhN9QFBSoXtZWTYNgxlgyVIsnQXEjkswuz7+y1RtU6lcw4nHpxgU/AvkyUwoNhp7xc6WSVq5R/matN8cUd3a+M1SmZaCN5GQyk7pYwEu5GwsU+y12Rg87bziNk+GuCS5fW2g595bD/QhLEmCXnF807GNQDZ6lssJUiVorMaco4Y+FUt10sQQFVBXniKDQVU7/yT5KK0MkNUKq6fe4vnTz/HSVxfYt63NJ+7axScevJlPf+puqus1XnjhHN986jRzpxYRqyVkW2dfyWfb7NADhJRzy9zJ3L+TOQdiAFFosv/AMD/70G0cOXIzIHn66HH+8Nf/N548s8h8bQDkdmIns2JSeWodqFHeJsWGIhmaNJUvSqRgaAghGhbcuCobw4EPhMxf/slQPLIpOHF9IXGZ7tqNHcctz1y1M1Pa9dPLigG3F9yEjsH38mz0F8cuz29c7mS2F0z4n9iTIRLiuFJuvFlRBw/fNgV6puotk69Ms0Wif67+CiNPVcMQwfAgLFSg2Y5BSHZnBgoMYojK0PJ6iqpAvevt1T1N0YHVdmOJ+UtrPHHpMm98+wV2DGc4cNsObnnwg/zdf/KP+IzYzXdeneOHR09z6dhktGLdinJW+4p0WLRDDxBSJu+ezfLvZNaczNk8gzsPc+8DH+fnH7qF20cqXHr5cX7nN7/OmWPTzK+2mQ+VCQsiRlMgdjJHaN4kRbVzxYdqVuWTyhHSVLPg/BAU80SIb7MOnSkkO0B77f+JU4CtakohNl7Ctkc36VF2nQnhSeWCnsQ2bRs8bLZk1q8XW1ItZLIzn3+pNw+xncmx3G6/+FiAsOSxc4+Dr81NWPD1X+9ej8tTf/v2ZvlSukzIB1R6G/hkcgE90pMAkYFiGZYXIzBpdgdw/c6heCqWxe/MjhmUvviuGFS1y6AyQNiCmbkmF354ga89dYHV0l8wcPCDHLz/M3zsv/0c6fIwl0+c5dTR73Pple/QnJmk2KB7gb4v9AChkCQns31dRpYmtVSd/Nggu+/9MHc/+mH2HdjO6uljfPHLf8zkS98iN7/AUDuKL4kZTYpG5waiGrGTOVpyb5Olpk3JhFZuDqjQIAxaMDLodJJPjXQviE8Z3Fl6EhNyldicv/sAzwYqnHjSeJK0eqSUUN2LZE4YfE5ntJRJUBHnjBWHvp70U575y53++STsL6+NYdB94msnE6w39hTGPZU0yOh5+fYvmXFMV4GrK/q7SJ/ygyAqUKtDuztEq3mDApI6QefGZ2Vhfme2SgumM7vlwFMdWGvD9HKVxkvHOPbyCkHxO5Ru2sctH7yVh3/6Ae7+lY/A5POcfeqbXHj+VRYvreALPUCo3Sky4ju6k1n5aLIBbB/McMvtt3HrI3+d8bsf5txim6cff4lv/uZ/pnL5OLJxkTQrbNPSqQX1yMnc1kBId6hliTxOVepEJ5XUxRpqV1CaNu2BHO1MGp9imcasd1/8y3UCx+oRdv9Fv82NiIIYbsxplI916HH8RgGK5QTeOModnWQQumnbJhDzQ0k/S+auU9bO3TXUGE78ddNz7cfbFBuz+6S332hj8NDfb+Scjw1e1cxtJ71+ekvpPe6TwJxu9wZiHS5j9h0IyJdTNGdD4qmY4tIx18nQNr78FcMTNLrzmt7ObH2CF+3Z1hiUTBGuV1h56xjPH3+BF7+0wu7tbT7xgZ38zIM389d//l6qK5sGoSamk7kQgZCA8bzg1gND3PfQndz6wBGW5TYee+o8//7Xf53Js+uE1XSnBUOitawsVY3RqArFjKZGtBNJn5JFMNUkRY0WdfTF+I5U6TRyaJDVhEVrv8KrX+b4IpwnoDbM+8dXFddkOeZUy9wcaeblU77e/hdXkdVkSJe7NzS5BpbUTsnu7F4TmGRjdqE5aXprlCVcvhbH00Evrnv8RHSfCERXs2Qn36BzI1QUgu7dUIEICBGkOk9SpAhE0OHo6c4dUWkkaQIhyZIhQ46MyJAlJCty5MhTEDlC8ggBRVGkyAADokRRNMmINFXKrIkyUpSRIsOASDEm6oyLBkOiQigC0mKUdrCdjNhBSxTJBXUmRJabgjRjYpl0AKOiTHYpy7Gzq6wuAy0dSCKoySIdT5FaUYsZlA5REXgpBqXDk0oXrYrp2wFA+ZHC+gIz5+f57vmTvPnnP2DPaI5Dt01w79/BCT1AqI6+kznIDrFtZ5mfOXKQTz18GxMjKY6/coL/8lv/laNvznB8tcVaOAwoJ7MONclO5gidWx3/jg01WcLOlKxOPNulk8dQuchqKrAofa8TzXTfQ+zriIO9hK8AxrfyZRJ3/1RLgvCDgu5XiAFQJ+1B13BUntG/jimJ6O/AvGqNFKJjMNENhUHntsLoqrWAsHNbYYYMabKkRROJICuy5MiRE1maZMkISYE8BVGkQIO0kLTFACVRYpBB0mKQQLQZFi2GRYUREZIXrcjwxDZaYhsFMQoiRTkosEsIdoo0paBGW2QYCMbJi90MB9sIRY5iUGVnMMxOMcJIsEoQpFgRw2wPdjMX7KAelMgHTSaCBXanphkPlskGIdWgzGxqJ7PBTtaDMukUjAVr7ErNMh4sUAgatIIiS8F25lPbWQ5GIEgzHNTYHiwwkZpnMKhCkGUlNcZ8sIOl1DitIEcp1WQiWGJ7ap5SsEqQCqgFIyynJlgQw1SDAjkRsi2oMBYsMxgskhUtmmKQlWCcRTHGmhggJQRDQYVxscioWCQr6rSCPGtilAUxxrIo0g4CBkWDMdYYZIEcK0iRosooKwwz39mzl5ctRuQaI3KBIssIGVKRA8y0ypxYCHnx2EWePfoyZ199nfW5C8hGg6BzJFU5pBU81Tv/XAYVQ5TuzIakndk+BlUlT0gWCJswPV1ncvqC1yJ7g1CqQHZ0gv333s+jj7yPIwcHqJ99ise+8nXOvXic1YU6lVa8W0dQRRq7p+P1rAZpqp0dl0pkBVHZrpO5jkkLozus6x0AU0uLIoChwQxyZIBGkCFLhlBkyJHrXPVZICckoQgoUGRAFKmK6GBtVqQYFFUGxTplBCkBgShRFyO0xChVUSYdtBkRKSZEyITIUBAtakGBjNhORuxiJRhBiBRDwSo7xQA7gmEGgxotkWUiGGc82M1iME4YZCkFNXYE8+wIZhgK1hFBwGpqlHmxk/lgnEZQpBC02BYssz01x2iwQiaAalBmIdjOQmqCWlAmk5KMBqvsSM0zHiyTS7VopgZYDiaYT02wlhokCAJGghrbgmVGg0UKQY0wyLMejLEcjLMcDBEGGUpBk/FghXGxSCmoEAQp1oMhFoNtLAcjNIIs+aDNWLDOaLBIMVghEJKmKLMmRlkSg6yRJy0kI6LGiFihxBIZ6p0bModZYJRVSkgEJSqMiEWGWSTDOm0yrDNE9KRAQwYUZYMRucYAi+TkEkhJVQ6yFI4wF5ZYD9NkZJtyuMxoOMtguIgIG6zLAnPhCHPhMCthDilblMNVhsN5SuEs6XCdephlKRyhFA4xL4s0Qyi21ym162TCNWS7Tqvdpt6ssdpeZSFMUW2nWArXWW/PshJephQuErbbLIclpsMxpsIR1sI8QVhnJFxgPLzMUDhDKqyz3s4zE44zGW5jKSwRhm3K4SIT4STj4TS5sEItTDMTjnIp3M68HKYZBhTlChPhZSbkZUrhKi0J83KYyXA7M3KcusyRkRXGwhl2yMsMyUWEDFmSJS7LHVTyezh4x7088tmfYtt/90ssnDvJm0/+BWdeepzG5Utkai2QMZsxndk6RCmYcZ3Z+opavB3A9hbFzmw9rf8MfQ8Q2n//XdzxyCfYf/cd1BcX+dETf8GX/u+v0bj8KmONJqMdqDGXzRs0jS9xqIlTxGiqHajRxVZX5VdoIDsz1HhKphzUaRqiSbqQ5rabt/Phh3+M2z/0E9RzO1gORlkJBghFOhpJgnWGxDKFYA1EhpoYZkmMsizKNESOgmgxwgpjYpFBsYoQkpoosSRGWRTDrIssaREyTJVhViiySKpjXBVGWKLEMnnCEEqywbBcoiwXycgKbZliRQ6yIEdYCks0pSAvawzJJcpynqxcJZSS9bDEshxiPixSCVOkZZPhcJVBuUC+vQBhk1q7wEI4zGx7iNUwi2i3KYWLjIQpBtspUmGNSphFtAPCVotGo047DCFchfYsjXCWbLhKPQxYCmeZDkeZaw9Sbwfkw3VG27OMhVMUwyXabcliOMhUOM5MOEKlnSUd1hgJZ9kWXqYcziPCFiuyyHQ4zlQ4zoosIsIWQ+ECE/Iyo+EMWVmnEmaZkWNcDrezKMuEIQzIZSbkZbbJaQbCdRoyYE6OcFnuYE6O0pQZcnKNbXKG7VxmSK4gpWRRDjLFDmbkNmqyQIo6Y3KOHVxmRC6Qps2aLDDNBFNyO2uUEbQZkotsZ4ptzJKnQU1mmGWcKXawxAhSBhRZZTvTbGeaEhVaBCwwzBQ7mJfjtMiRoco2ZtjBFMOsIpAsU2KK7cywnQYDBDQYYZ4dTDHOAhlC1skywwTT7GCNMiApyyV2MMU25ijQpEGKOUa5zFIkE2kKrLLONFWmGaRGG1hknSnazNGgRZ40NSSzpJmjzQoCyQpNlskx3U5x5qWTPP6HX2F45xh333OIjz14H//wlx6iMX+KN595kleeeY0z5+ZZrbRohLYzGyI/kuvMduEJejmzsx5n9qZB6G//g7/B9586zh/+m99i6cxpZHUa5DQpZOeYqQkzuQ5cdJfNHUYT3U6d7GRu0eyCUJxzkBtk564JPvHAHXzqoQ8wXk5x4vVXefovn2A+HGY6HGM+HKQRBhTCVcbCGUbDaYrhMq0QFsMhpsJtTIej1MIMmbDKaDjLhJxkOFxAhC2WwyJTchtT4TZW5QAibFGWkXGNhbNkZY2KzDErx5iS21iSQ4QSSnKZbXKacTlDUVZoyBQLcoQpOcECIzRlmrxcZxuzbJPTDLKKlLBEmRm5jVnGqcs8GeqMynkmmGaYJVKyzSoDzEQpWZclUrQYZpEJphljgaxsUiXHHONMM8EKQ0gEgywzIaOURWo0SbHAKFNsZ5FR2qTJU2EbM2xnhkHWkAiWKDPNduYYp0mBNHXGmGM704ywRArJmix0jGs7VUqRwbPICtOMM0+OFlUyzLHONHVWGEYiGGAVyTQhs5So0SRgAckCGZaBNlnqVMixQoFVBOuA+rzeOlWKNJCkaFCjRo06dZq0CanTpEGDVueGKEFIq/u/6LI1dTuUuiFKdi5aU3dGxXdF2bdDqafxBDyecrv78t3FENfBrX6pePGCgc8v5nPpm24HFUMgCVIBDJYI5xdYODPP42de4Mk/rXBorMiR9+3lIw++j49+4kEqNclTL57im0+9yUsn5lhdSUNbX7hXU7G2wZHMndnKma3Wyv3bAfT90/4P/vQAof/l7/09GmsFCM2dQW1yjpPZXDZXTmZ1uFQVk6VFmloHanTPT3ScQ8YglB6gODbBLR+8i4cf+RB37B1l/uSL/MEXH+Psa68wkFmnnUozzygzbGeREULSFFhjghkmmKXEOiGCJYYi45LbuiPJGHPM68ZFgRlWmWGNCiUEIUMs0WKaOvPkaFIjyxxt5oCVzn6kFqtkWCLNMg1qtEixSpo1ClTI0CINVKhSoUqNNHUkUKdOnQZN6jQRCOq0uvcWRiajLlpr0yKkhaDVMaTYnNR9hRJ1JAWPGUFoqX7yUYMk17h/5cu/7Ozu8NV36yT5zuw9QPquEt9GCRcC7BoJI1fpycdMYS8P6PXT8zHrZ/oh3R1NLiQJC6jsNnAXOvRVWX0ZX6VETzVQhPU01CKvj2zUmLlc4/HLCzzz+MsMDeXZc8se7nzgw/z3//DXWM2M88zrF3jm6Cuce/041YUpZDPyFilntr7WZjqz7a2P0Vv7mhEdnnwhEYQaK5eJnMzqxFd8aKLWgRrd8xOL1OrsZC5q6SK+I8l2QUjfUpUG8gFky0X23vlB7nvk0xx8/90szM3z/Pe+x+/+X99jeeotss019g4JSjkIpT1KRN2WtHyrq23scBYEXeOK4wjvqpbaqKcblb1eFK9WxalshbdV26fIuqtaL8c1WRV0mWyD0PfkuOOrsOROMkmzLNOYhSNTPMKbvZCcu/5EdP/W+1c48VQLCSNO8pYAd1+SufZmG3zcyyYwmnLriwp6m/tgMERvA3c/kZ57iN2u+gquvjLaYUKE0UJIuQi1GaDZXd8GaLZger7G2adO8I1nTtIeeIxtB+7h9g89zCd/6bMMDQ8xfeYEbxz9Nmdefpzm9EWy9egCfdeZrc90FERFb9MagwLzWIkv9HBMqxMlvmXzfpzMsbs6TpulSZU60VmStICBQorDN+/knoc+wm33f5z5dolvH32V3/qjrzF77iJhbQ3kGiDJZ1KUymmkQ+ySVUR1kG1KMRDR7cyg+zQ2IBcUdPVX4OFXPj2u+8SU1A85Zkq3NvaeHP9OnjiO/sZmQklTCJ+U5rRASembisRG7TPSJGCMg82WBFiluxBgG/PG/eKTwNUg1dcuUCUDdrJumruOYshVbanrXXwcxwZGs62iATRVyCBKWdprrS4NUD6drtcmlDRWa6y98gZnXr3AN//LlxndtZ277ruVRz/6AO//bx6lNv0Wbzz1l7z+/GtcvLBIpdqmHkJTc6K4623JzuxNg1C6u5O5js/JXLOczLHnJ7oiPez6d5TTKnYyk22za9cIDz94Jx9+6McoDo3y7Esn+fef/z95/tgk62spCNXlSBIFc6VyCRE0EkDBNhpTZQPPnpyICZlMISAkcPbu9B5fTROhm5dOqs04phG6BN/HhFy24I7n3V0wnpbBqYn7xOQgdhwdPHWQ8QOVOQ3T5daDn3WYUmzcx27LmYOMnzW7ban3ifTK5GsVc0pq6pMO/i7AYMUzZTJ5nT7YxFLam18j/ZUUy0WqFUiFsVa0iXcOtboWmwIpCStrzJ1c5HunXuCHX1nn5okiP3HXfh5+8H38zGc+wtp6jaeeO8G3nj7Gi6fmWF3LQtvd+hjQ9DqzrwiEcoSencwC5f2pdxhN0k7mRnfzYaei6SyDYzfxwft+kp9/5B7et2+Yy6de46t/9E1eevkUkwtVFtvqntqyVo3oXzZfpDgQEH0sxa8QMU31A4J+yiuGJtPX4VcuExTMUUk9iT/fG4Vkg/cZjvnLzsceSfU4wvrlxnONwi7PhS4/CJttkARmdi8kAbpwJJBOzmZ5LpxKb5yk8nyw26unzNrEvWHrlNt6ZnuTkLvJ68ycg65OmT0ahbATJ9Jgu34h2UyKfHmA9tJqV48VVDSAsDtRS3VzjDYa1mk3KkxfXOM7F2d45i+eZXQkz4Hb9vG+B3+Cf/A//VMW5AhHXz3PU0df48KxM9QW56AVMSE1FXPP8Kt9RW7oAUJ0YEZ3MguUbyhyMje6Tmbl+VFO5gYNCFpkywPsueMujjz6YT7w/ptpzp3nh48/xv/7+cdZm5ojaMSjTZRP2IE2BW8pEAG54SGEWNfUzAccPqWKRjfVpb5uNZ/4jqPqqq1PbXz5KMUiUS7dcFzynmTwruHYqt07H7PlfO1kt6fN4FwDTAIrnNwlSW3g9kmI/sHojYDDrwexBEECLMUSJNfEbCu7dZOGHR9UJgPxRsCv945blsnb1Zso/lApR2V9HZphdyrW7PyLT0OoGqq3DVIdiBJEfqSp2RpnZ9/iT588Tqv0ZSZuvo/b7n+Un/uVX6JQKnHpxAleP/odzr7ylzRn1sk04wv09UOy7QS46QlCaZqdr8PbTuYMkZO50XUyq4pnBIwUshw8eJgPPPRz3H7kYaphiud++Cz/xx//EbNnX6Ndm6Yg65TBcW5ngGbn83BKvNRAkVQui2Tda3w+pQqdOHp3SU3Z49S9gCOeQsWxk9XWHDttSU35/UxhI6qePOLqO8aTRvikaYZ0yvNP2fz5+I3LZozxU7+R6tMxX3kmz3KBKkkmc6rVK04SnKg3LnCYkpp8NEQYOaj87DbXdbM3a4ynddHnx6V2IEXXpyAVMDyUZnmuQZsYZtrdqZhKFxJP1pqOH0mxmUpbsr68zuKLr/DWy+dIFb7M6J7d3PXBO/iZn3mE2/7OJ6lceo03nvweb73wGtOTSyxXQ+pSd2a7IRGEIiez7EyrkpzMAXWiu2OLWcGu3UN84Mg93PvQo4ihfTzx8hl+5/O/wZlj52muVSBUDCfVReSMlqtiUinane9UpiGVIRgqIbrXdNjTI7MDo24NOh0Tj/tBN55+Ulkfh3XjgSRlV2XqwRcnls2No8tujm5JipwMFWbKuOSNJzCmhO7EMh4jNzL43k96t5M/pVpxcQ3ezyptKVXf2YxR73HpeZIEaEl9myRTrEsB+tTd7F+7zU3u5xsGXCnRaqMDkGqVfDGglhes12TX5mR37qLaWTmWmwQdvqJP0tTSfMSgOt9jDqG9vsrssdf57lvP85dfqrJ/e56H7j7AIw/eyS987qMsL63y9LPH+M4zx3jp7Dy1Nf/diokgpJzMFZqJTmZSeYbHcjx832F+6tEfY9/+nZw6dZGvfekrfP+lk1xYqNNuDxDvoI6hpk1Ag9C4eECtskVbyaLveabKRYJ0GjqfBvaZdgwwJk1Vo4pKFU/HNppC6E98Rh+riTvNcNVIGnnpQYeAuG4utTbNTecYECufHiMZzHQj1Wu6McDEsXSz1WEg0MqzmVBvMPMZfD8THbsN7NazZY/j9BpkfAOEMP67Mc+0y3LhMmYvfg2z29KeWJrTVjNuF9JEwOBwitXpFi2pPoOlZjQKPmOepE/FQOdHljMbiP1INZq1FS6fm+PPz13kqT//IdtHCxy+cz93PfgAv/YvPstMs8wPXjmHLySCkGIljpM5yJAdHOXmOz7ATz1yLz95116aC6d59vFv8x8///tMTq2w2pCsoJRSHcxQChpBTUiKJmF30qV7nNJAkxYiG5AuDeAaqa3IoQMu+lSL7lO/MftgJw62wstuJ7uqrRuqO9UyFUsHGF3CuEyXBdiGY0qIlXtvA/TxJx8obJSXj+UJK0UsU/LKkMm84hbsPfVJAjTpLW+jQcbOy2zLuNfc9rTLc2VyW9nOx1c/Ox/FrHRZ/BoU/X+IIJNLkR+AlbVWZ3BWFgcx14mgRrdFfZJmOrP1g67KjxRvB2g2JZPTFc5Ov8HXvv8m7fKX2H74Pm69/+P4QiIIxfAhaYomqUKaiYO3cM9HHua+I/eRlTXeOPpd/uW//l9YPHucdK1JTpoTtjRh5KDuQo1C3whqoh3CXYLXLTciipL80CBhECtsRBzdjnZHZfU0vvjL7ewk40rmDnEcqcUy4S2J0+jx9Hx8I2Dv8dVVtfiJMuO4vXz5uFzFJ3c/U61krmJPPFxGmcQCfDKZpquzT7d1k1L5dSAZclyAsbkRifkk91+vljOHOT0oePNBeBz8g0PE/weGMsjKOjJU0zDVkjEIqamYDU/xVEy3YROE0oRdLxPam0pbsrK4yvSzL/PK82fh8/8MO/QEoYFswLZd27jtgUe4+6HPkBrexQsvv8Xv/eZ/4tKbr9JYm4JwkQJNypgkTzGpRhdl1XQMFAi1CWgSfQFeNYtKWyzkyRUKVByD0Ne4TDZkjyQ+g8bqQF+H+yYCumLpudtPdGDAkicJFJJG9+R4sfyAJotupBuDh1mWf5rhTh/02sRGihXHbH3fVITuO1Mmmwmp974Vy+hf3PKhVV4ywPjiSHS5/cCIFc9t83itz9dv/ZVnplZxAo/sApzy7DJDBKl0hoHyINUlfVONOkXQAlqkkI6nyHRm+yFKaM5s+4iHwaBC3YbikAhCH//pu7n/kQ8zsf8OfnR6ga/8yRd54aXTrM1XI5ijheI80RFC6YEZ5WRuduLrUBNdCtWiQZOYAQGkAsHg0CB1oQOHtDrQbHjdtai/d41adY36pbMa29R0c9PL0/NIHpFNk1Sp4+BCjlme8EjgGryreD7eo7dTXJaZqwndKj+fSZoG2Ks8Pyy5wGjLruRLmq4kS+ljsqbcmwFZHWDA1QP/cGHWLy5JeMvrPRgltbDeY3oqd4ujSl0cLJNeX6PVtFmQAqEYYnSeEzuz9anYxs7s6K0gnutsEoQ+8bOP8P3Hn+OJ3/hD3ppaYrERICkTOZnVSlnsZG52oEYdSlVvYydzE5MrRbDTQtBEGjfxl0o5MrnouKdAPzqpiGmv1QydCZmd5LIcvN0Vx7NZgvqlfEI2Y9Lj+N77VNa3WziZzvvHTWnJbRugr53iJyq+bfA2q3KNJg4+E7EB2zUuHfR87eQHNJ+Rmuw0qT1tmNDhCysfd5NHXBOzJ/xtkDSwJfvF/MBo1k39Mwcqmy25O/4BgiBgYGSU5ZkVYl2JoCa67s7lOS2gTUQazGlc7MxOdyDKZlDxzmydQbkhEYT++a/9Oyq1kJqMMg4IO8vm+npWBDWSdBeEVIYKhJSTWXarpBo2Ei4k6Fy5EL3JpASlwSx1q2FVcE3XP0roXaP/ZZu4rlb9jabqV5yLnoNryNITz8zZNAis8kwj1VPG5dnMxDVAE6RcBbXbwGQcukx2vXz+nqS2NMt0WU5cP7O9kmA3KS+TMeo95g5WJMZxBwdI6uPkNsDIR2l0rIkm21UpzbNj/nYCSGoVM048pKbzedKFBq1qHd9UTOdIigm1NU9tFGKuIzp3RSQzKIUC8Tdk7JAIT6vVkFDSxcA0kthF1SK+YUU5mUUXZvQL3yPRFXVro1/WHbMhhbgwOJQlnQ66nac7nVV3hUZHqrJcFdA7wf3LNFvdSO1ONPOzgSNOnSyLj030Ngg/ezEPy5oKipaPSqHvRU4ecXtxEZ9MbjwTcnw8y20Zm1XpstsAarIO0+BNfmSDLI7sNvTq7zdijP6BL37iZ7IYv3zgGZcQ1y2w6meyPLNFkkHdrlsgIDc81PkZsRlBmyR3dRtwl/TDbtokBqVQwjwaskkQahFDhcIyYWSvoCYCkmhKFguup011c9TfxmlDRPSt+WyKwkAmQWXtTupnlIjloPtfUymwfvmNQlgp/BxCL9mnDMlPktVfPcWTu14bPzC6sOwzLrt+/jgmYCeBrC+OC99J3MiO56utpLfctsn6ocQENLxSmoBmA4zbo8kcqpce2Cw1fm9fTKJLCb3kMYMNuelsmmypQGSLbSLI03lZPNlqd63YPxWzGZTOgtoGCwIFaXboCUJtLVKUlVmEDTU6zCiepIicMGaZJleSnZzLwwWCoB+G4zcDXWnQYqt8VHdIzz9b+YSTkx7H/1SlisdMV9HVW5N/2HQ92ZRcWLZ5iE8mgU/2JGB02aA/pR1vI0iN66dy9bEcnXG47CVpILKN3ZTbZibJvDUeZDDKs9sgeud+Ud4cBjBqY7ecWRu9tm5t4ve+nnJbBnof/8gPDRKkAIsFQcxzIjsWCW9bRlr7TTwVsyHKDYkgZMNMfDmSznd0qEnTRngnXfGUTKXTc45i5It5cvmcpRDmmGB3AJ1mBb3D9eAaqflOWOl7j8o6oPlAAet9LHNS7iYNT2ZCqiSfAZp1TFa+3gzGBEbZfesHPdO4fEazESjYRkE3J9skk9gZG9Zv477xg14vxugCvw8qkliVLoWvbnZ5gRHXx4SSgMonpd6e6VRAsTyAOltg+3TUv2QWFE/FdHiK50oKNa4ChOxplWJDosuGFKORxNOqwOA6etpoStbGBLAohghSDA0NgUg2rmTz9YdkFpM8ctsqaY49PqOxc7blttXRXdXzczFf/c169zYRH6+L45py+/gMiXnZLWdOIfR2clPawKG3gQ84JEkHSvUWjmVya6LXUS/LDC7oJdU4qf7uU9UGSf3iB1kzji6tW1tXV3rHcyGuNDhALptxeI7pD9IhSr2N7DgZnuhAm89b5IaeTEgHovhcl7l4Z0NNG9fzExM6k+ipGKVymUw2S3L3g9nZdvC9cztm43Ea64mroHpqMx9TjZLU1l+mm6oXBLgQ547crux+CXzg4QOOzbBGvW5JUx+7xn5D1dvIZUsmoOvlmeaWJLvLZ0wJfG3kh0EX+MyUyYBmSxDXL25BYcXt1XI4cdz+UyEQAWMjQwQiTq1bqHQ4UgxAosdUrPf5NDf0DUIqcr9OZt86WNAVRqtmOk2hVMIFIFtpbBCJg6kIvUZIs5Ndxeo9KvfOXVdt0yBchUliVT5j0BmTX/mE9TSWXR9JXdovtTe2BGZ7miO432hcSe1+03PV28ltTxOIbAl8jErvGzOOyX3MuiWxM70Ffbm77NM09jgff5uDr81tKXya4T7xAbFPAl8rQy6fpZDPdSFGgUnktdV3/akYyl0tnTd+Z7Yq7wpAKJnrJDGaKIZyMvsX47HShRSHywSpeKuiCzdmo9nBhKwkI3VVqNdTPHnZZSaNZaaS2vklq5JeHt7cVQwfn/GxAL+k9MzLrnESsCdzGtWKSYbcy5jNOGawW0UFmZhPr0HGrZsL83EaF+LN/OJ8XPD0g4sPrN2cbRar/1dqeflq4xuM/GAlGBkZIOic0dStM9ld3XYgRgchqSGFmXaTIKQ7mV0gkrhOZtCnZPobPa1e1XQuQ65Y8Da1jel2MJveHNlNNbJZh49RJJeSxDrsfEInH5+qmcql52WP+bYh+8YyW0l1lUwa/VzIsWUyAcYH6nZKu63iJ36QteVy2YkOVj525h8czPq5HNoeevSa6KZpy23+slmqHpIGGVUS2l9C+3+9Hey+tfskGeJMoDLl0tvIfpfOpCkO5LpMKCIP9lQshhrR2b6ot2FvZ3ZovLVDIghJbcndnVaBzWjiygbdKZn9RnTTRp8mGRgeRgglaNwoyaAQx4nz7GVqejPZcZPYi2+M8o3nsWrr+cQpfWxI/+UHF7v+fkrv8oIkZdcBLS7dHhN1g7AN3jZ/M5UNaHFwgcMHJ0mg4GdeybymV/179bFPi9zhwmZVwiOLq08+2PVphim7hISaBEjPU7ud9HxcLYvlNt+Xh4oE6ZQGFfau7hhI9Eka1ttoST9lvVW5bpIJ2U5mc2uiveRu8x13Sob2FiSFgQEy+axhGHFw1df/LEq38QjhQpsOLu4b9VeyEvtGG9PgfazDBA4XTnwAk8SEkuLFsieN0y4PMdvKr9q2Kfmh2Z+PDVSxcsd56Drk8hB7hE/mIXF5/gHNNV1dD0Q3pQmwviHFLsHUJ/tIjVueX/ZYSnuwTYYcWzdtKc3SffUXqRTl4QHtrQ5ACmaifz5P0cbg1UJ0UcQMPUEoTAATPxsyoUZ3cNlvU0FAqTzobVxbrc2/TAU1R0dXYWyTsw3HZxA+JbbHHxdgfCbpG3HtWkn0U0KxOSYxJr08V0rXdP2QY4JCL3gz6xfLHae289mIY7jm5jNAX1vp783axE/9QOzykDh+nN7HlkwJfXpglm7mY0sbp3IHEJwU/j7xDWx6bN8A6RvifHpQKBbI5NTh9MDKQU3FpJcFxbOepBW1tnEGVA89QMjPaFQTd6dVjl8oeisxP9Wrvx0ql8lkMh5Vi4P9zDWzZGaSBEBmd8Sp9fKSTcQclWx4MhXHNohYAd1cfbLb0OUfO7HkcjmdKaHLclyQTRp17SemMaP95TNmf/3sttTH3SS+ZhpzXAf/6J8Egb6hydW45DY39aV37iovsz9svpKUjzmkuOzMrq2/123d9bcMImBoeBgh9DstXBZkarn+1gYv05mdBDY9QEhgO5mTl9x9fCcwEFK9yaTTlAYHkos1gqmyfrJpjy0meXeZld2t+vukkcYeTX2S2GpkymbXyJRAr6OZgyn3xgzGVT6bVeltgDcORm1dg9FbV4cbc0w3OYZZdxcyXKiwR3m7PP2/dH/5JPABjF1HU5YkSHI5lv7b1yd+6E7iKr7+9WmYm9ItwczVP0S7g2g2nydfLGLqQ2zFtqaYUzG7dNl9q3Zm+8IGIBQvudsQEwujT7w2BqGh4cHO+bC4Udxgdp6PX+gK6jITvQNtxuSWYoJCMuW1y/OPlHpeZv18NfKrmo/XubCEEccswUxpqr8PTk12YsrtyytZCl+/6ME1wCSW6s9Zz8cGULsEHxd1DcmU1H5if0UW430vDuVrS3NgU3nFdTRz91lHEjfSS8aJ4+sXH2cTCAaHhjvbZnSb8h2n9U3FbACK8EGfpNlhAxCKwCR5HQxLDBem9OlYLpehWMxhK01UqXh0Mw3GN9a5zZHEkdw4umLF5uQCkDnqJo8kcQl2bdyxMxnQ7JS60tgl2LXx5eyOdaZ8Zl5mSSZj8pmZ3iq6ebvtoPdsfwYYy48Vxye3r198Ephl2ToV/63zMFseJbspqw9gzNC7bm4qUwNNZuHjdL11JUnDfIN/FDKZTGcDscrLZUFgW37S2wg5Aux2iEMPEFKvY/+Ofx3MFScKJhtCCIZHSp0leT3oneI3I1uJ9eOsPsBKIsF2lyV1v2t2NijonWhuHJOg1UZX5l5jp8pJ/2dzljiOWVtTLju/jdhg3Hp6G5hl2jU2Uybn5X9vK6zNVXoBtq9efgN0wdVmcUlAZNYkyXBMWLIhNTnnXoORK7cPjPW87FZxtUZa8Uw7SAIiyUB5kHQmje7VtSFGZ0Jmf+g8yXVm22EDEIqiSESi50cYIknnrRJloFQgm1MfP+tvHBMeyDGZgmlc/nFYz6u38tlU1ZTUVjVT+Vwglc6vpFHJbTNXLrtVfCOgacz+vOJgfjPNBVk9ZlyezntsJpj8xM/X/OX5zN/HTPycxoQB30BjQ67dUz4mZJu3Xl4S8Ou/bE10czbfuMOFH4DM4Ddyl7e7w47bQ6kgoDRU7jwLrRgmAJkghPM2sN7aoQcI+RmNbTJBN25SDEEqFVAeGjCMJRnDFZuQ1j9dKldJbQW0FSsJArBydwFNl9RWVF1+15Rcw0mCQlNKf5f5DdH8lQwedv1iyElSZh836Od9lKe/1eKa+HOWie/jVnOHAjt3H8zFv5I4j08mV54kKPGVp+ecJJOfmfng2w26tpptqA+gej7JvA4tH5VroVggl8/i51w2ANn+IHPvdVLJ0DcIKU5iY6IORDYAxTEGy4OkU/Z11lL7rz6ymQzH/KaYC08QK4xtXHHD26ZvfzkVIx+/Mduwo7eAyaH0N3oKHz32hWS4NN/3BjP3qR883NrqT6Txz8dXklmOy42EtyZJnGYjjmHK43KVJENWT3UN9A0r/tzdp7HR+/rUrzk6cAhMzTD7zs/QbNnjsnxDZbK+6f1rpwwElIeHCAKBrSEuC/Ll6i7p+0IPENJ3N0aV8HGdWATpeSvIZHKUSoOGELoJ+Tp6o6c+BfWPtiYk+ViALYndXWYqHfSS4tiNbY6dflocG4VZNxNk7WDW0WVxfgN0zU391+VgPjbozznOxwfCblwfeArnnWlcSVpnhniw0mW3OY1ttq6+bBR8MB9L6uq3q/3xL3fgs4PLqHygaAKVHs/fW3EqHwiDJJ/LMlAset4kgaXOhDYabqOwARNyzSV5Hcx+GylChKSBp8HcUSRiW76nSeOZbaS6qiU1vjsy9+5+M6WfDflYji9nX4f7lL7XqByX544xPlPSQU86cZPVO25de7RMqoVvpPOxE5VadJ/4dM1lcL3bwDVL3yjv0yW/qdhgbuqTbfC+lo1ztxmOG5IGB/1Xkjbbqfza7A4OcXqTWQvr39BQmbRx04Xdrr4Wd/U2qf4bMCG9yc3vP9pq4xMvV4g2Pvnhw+UO0ZNob1KspMmAZebphzh9FIzj+JTLNxKYHZTcke70yB4BzQ7Xgw9g4xx0md3xXK+7b4Lmz9WNs5GquPX3G0avEbdXLf2GYwO1z+A3zt1lsL3LMocSN4Wrd3pZ7nTTX5ZpP/5BVs/D5tEmANjsy9UyvxSqdN90M5YpnU5THiw5svshT6KzILvOvtAHEzJVwecXikXRTC2INj35bi4Gt+pgA4JCZd9sPJYwWXpTKXRD9o35NofQ809iS36+4o7MrjLaCuaLo+fqpverrTsumopi17QXoPUGEB+Y+UDfb269ezLJIIQRN4k/bQR8Jl/R28gcQJJkSg5JNmHqic0z9LgqF+H85dcBn0wb9Zufobj2abZDaXCAbDZjtZ4dfBQl/uU/vto3E4rFSmJCsdBRuuLAQOcwXLIxmBMw943PeOL8fO+l9cttWD34ET3ZSO2xQ8VLGhF6TfbiNnPj2O2q5+V7q2QCU3FsqmyzM7c2djBH3d6gH5fu8gM9+NrJlskMyUDtG5rivPxcDau99TxsUNiIb0nrL7c3/eDSu73tYKbqJZPJmpJy1WtrtlFyHwdBivJQGSGSWI2NDNeECSWthYkuqtkmoUIqnaI0NGRV0sd7bA9QMiqrND6D99Ns/wTFb8h+4p2UIpY/CbBMFpDctf6Rw1e/JA6hl7wxBddls0u1WYfbai5Vd1tG5d7LiJNT+VvDltufs4rTj9w+mVy5/Ubkgrqu4658rtYr2VwpkiRwGXXcS7H+6jn6Bz6/8yF+a6c0W6VYLJAvFBJ1Jqn3roIJJRtIkqKohhosD5JKBVp8d96pDMtcgtfHKR8B1aVzIcfX9WYn+Q3ZX8Pk8dxkJS54mLXQSzH/FtY/O5ZeE1MeX8+4puBTBz+89QfqbkpXUl/utoS9gV94UibDsq/0JLnNnP18xc1dWnLbKWxwdCdfdpAeCdya2HL7prducNmS3VMuq3ZBxZVdyVQul62zn3GMjVjQFTAhne+YQibhngByuRylUskjRKDdnBPHV0CkYsZ/JY8U0vsk7iQ9D7+BbcRM/KwiVoYkmLTj+yeXeln+aZb9yydPMoSZo3Y/06jYMPxGo0vsH3HtPvHnsFHudtgod9uPc+U5+0Pvt75ptDtcmPkkGbz9l3+Qd3lPbwl9Mse59x783CARHfse6D4x/7neYvutL9g7CD3JQ0ysUootvQpQyOdoNhpIWp1qyu7ps0Dz//g8Jr6xzX5vU8nkfHx02ayBeqpziFiJdKBxxzapxbFl900n3brFZeo5J5dllxPDgQ+wbSgzy/Pl7DegZLnRYveWIAlI+4vTSyZp1K1XHJ+UveL4n6hU5hsfr/ENTxvpd5x7rEFm6abOxfmYcuny+PXS1LleMtl5SSCbzSHEGlLaMO9CWS9Q7ZYh45yMEAgljH2Zo8T3VSK9IPNYvzDeJI8RvrHBJthmZwvs6vtHF7cEl7qbjRTn7IvnC73GbDsPtzw3rluWwC+hncpM3Tte/xKY+fjjuW10/eP44/WnDRvnEz1NbrV+9c2VyczDrz1JOtefPNGbfu3NL2VyXr2YUy/b8sFNIgilhNDAxH+ho/C8MWmXPdvrhYdJjb5xk/dDJXuV5+bcO16v0E/nbBTvysL1zX0rXM/wzvVd70HP/6bf/NzUAindSVkfp+glfvDYyEGN541fTGE93YzR+9L3m6afZ7ARdJrxNnrfb15b4a9S2IifXJ9gl2T+3ryW9gag5JDoE4onUspsdEIe/22/8YtgT6CSU2wm6L4EU6rrE64/ePSCwX7DFsS9O4NuK/1y9F7hWrArZWG9Las/rU2mCj2ZkMlo+uc7vbE8+a3/zbXK/e0OwvrXT/yrCVsc670R+ps9bC5cyVzh6mTYjCb2MR3Ts7UVvd8p2cYi+Zy31zP4JLo2JpzU4Vdasy1geS+G3rDQPxBtTqveHiDyuJ57xt8QhEQ3242NYXPm8nZyFn+Xy4S/3XSbYTRXGq4fLG6FGyvYLoTrDw1+j+v10K7eefrf9jkd653JtYCo62duvV3eybIndW2vLr9WU6qtqdVftdCvrSWluZIhtr9S+otxNRrbJxOyi+rtht7MmyuLeTVovln/zGbGql7SXN/J3lZ494T+t4JsbuC+2gn/OzXs9eUT6u1KjidsG6frjZfXohF67zG6FqGfhXj799XX7Gq3MWyFd2u4Gt25VoP/1XKd3ul7HNvwJbGX3PtJo79JXv+6GqO62vQb537t0lzpXoqt8N4KSTrrXwzvX0Pc9Bvb7DsdEpnQlXhw3kljurZelKSc+t354A9X4mXq5/1WuNFDf5tPriT0v4524/oaN7FEr4I+g9xshZKdZXpu13od7srS2rImT/T6AaOrZXr9PNsKN3JIXqG92r68HjuL3s7QNxPqd4tg/770/srtN9f+cvPvYOg9ubw69tNP6Kd2W+tm7+ag91hvMLpWmq5KupFCkjw9mdCVupCvj5FcaTclp7taR++16ORr11Zb62bvrnDt+8qn5e8GjdiQCV2tkdyojXAle5qv5kSPrSDXltFsrZvd+CGJq1zp8Jec9t0GRFfgE1KhPzZ0I04d3omFez1e77Wzze7OvtFVbCvEof8dQv2HjU8D3OhhU9Oxq91MdaOHze4AUs+u/S4g/flmw7ut1d97YfPnwq5VqW9PSVcakuTpuU/or0rY7LSqd9jspO1aHPUQ2t9b4UYJm+sV/w6h5H1D/e0yejdoxIYgtPFGwHdDNc1wfSTutQvoWq55XE28rfBOBD809H/s9Go06N0Q+vIJvZcb4NqEd9LLtBVutNDfcvnm+vfGn2xdeeh7OvbeqfJG4VpPp/r1NF2f8W5ronbjhKs9UnGljOpGD1s+oW54p9lM7zWzK8nx3a+e797Qv9cG75PNlfTuDlsg1NNU+93LfKUw0Tv0r8S9w7tfTW/04O//zQGRG3zp353+od7D4RYIJYbrt2bWT8431m7svyrhWkxezTzeGxMmFa7P5P4qNiu+F8O1PZ2VtO3wag67bgHL9Qq9d51vdgupHt4bk62Nd+X3v4fbDFtM6Do6g691uHEU8r0Y+ucsyVMinSlcycTJzzTern6/GqeCDVGbSb8FQhuE67H18Ep2Zm+FaxPentVCZYaxOW5uWvb2e3429j1dv4nl1nQsIVzLgxR62AKYGyNcbT+a6fvr1fdW3/duwc207xYTssLV7vq5Vml6h6s5z/9XIVwrB/OVrkNei5Njby8beidX4raYkBauBQBJz79rF7buDNpc2OxofTW7mGXC35sJ1yKPfsI7oUPJ9dliQlpImvVeeyBJKv16pPurFq6lgW3Wp3Mt/CbXuz9vvBNpW0zICtePyVwPFnNjKNE7EfpfDr52vov+0l8/HuyW/HZ7tpJjXE1Nt0DoisJmd41cq62Hb5eCv31hY4i4tsC9eUMTiW9ujPBOuNivbdgCoU2FpK2HvRShH0/Tjane1zsI679Xk8e1iNVPuDF7ajP1uxq+0/vtlXq0tkCor3A1I3Kv7rj2k733ptt6s7W6UjPqr/z33rCRPKm8tun8b7Yc0z3Dtdh62G+cKw/vjUOOmwu6C/hq63ulG/Pe7vWrzcqYvFHhah3o13bj4hYTuuJwfdzWm2Uz1381790ari8bujFCf7W4PlPWa6f/WyDUM/icwW/Pmtn1mPzdaOFqvRN6uJKDkxu/3dxK2/UO19Z3duNoSuJ0TMobR8itsBW2wns3bDGhrbAVtsI7GrZAaCtsha3wjoYtENoKW2ErvKNhC4S2wlbYCu9o2AKhrbAVtsI7Gv5/avA8c3HGtf4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "E_or_I = \"Field\"\n", "Rays = \"Rays\"\n", "\n", "R = np.zeros((z_pts,y_pts))\n", "G = np.zeros((z_pts,y_pts))\n", "B = np.zeros((z_pts,y_pts))\n", "\n", "NR = np.zeros((z_pts,y_pts))# refractive index\n", "NR += (Index-1)*Prism \n", "\n", "E0 = GBeam(Z[0,:],Y[0,:],0,BeamOffset,BeamSize,BAngle)\n", "\n", "b = fftshift(fft(E0))\n", "for jj in range (0,z_pts): # propagat\n", " c = ifft(fftshift(b)) * np.exp(2.0j*np.pi*NR[jj,:]*dz)\n", " b = fftshift(fft(c)) * np.exp(1.0j*kz*dz)\n", " if (E_or_I == \"Field\"):\n", " R[jj,:] += 0.4*c.real\n", " B[jj,:] -= 0.4*c.real\n", " if (E_or_I == \"Intensity\"):\n", " G[jj,:] += 0.2*(abs(c)*abs(c))**0.5\n", "\n", "fig, (ax1) = plt.subplots(1,1,figsize=(6, 6),dpi=60)\n", "\n", "if (Rays == \"Rays\"):\n", " for RayDisp in range (-3,4,1):\n", " BeamOff = 0\n", " ZR1 = 0\n", " YR1 = BeamOffset + RayDisp\n", " ZR2 = ( - PCentre + YR1 + zmax/2*np.tan(PAngle) - ZR1*np.tan(BAngle))/(np.tan(PAngle)-np.tan(BAngle))\n", " YR2 = YR1 + (ZR2 - ZR1) * np.tan(BAngle) # eqn or incomping ray\n", " Theta_i = np.pi/2 - PAngle + BAngle\n", " Theta_t = np.arcsin(1/Index*np.sin(Theta_i))\n", " BAngle2 = - (np.pi/2 - PAngle) + Theta_t \n", " ZR3 = ( - PCentre + YR2 + zmax/2*np.tan(-PAngle) - ZR2*np.tan(BAngle2))/(np.tan(-PAngle)-np.tan(BAngle2))\n", " YR3 = YR2 + (ZR3 - ZR2) * np.tan(BAngle2) # eqn or incomping ray\n", " Theta_i = np.pi/2 + PAngle + BAngle2\n", " Theta_t = np.arcsin(Index*np.sin(Theta_i))\n", " BAngle3 = - (np.pi/2 - PAngle) + Theta_t\n", " ZR4 = zmax\n", " YR4 = YR3 - (ZR4 - ZR3) * np.tan(BAngle3) # eqn or incomping ray\n", " RayBefore = (-Y + PCentre + np.tan(PAngle)*(Z-zmax/2) < (0)) \n", " RayInside = ((-Y + PCentre + np.tan(PAngle)*(Z-zmax/2) > (0)) \n", " & (-Y + PCentre - np.tan(PAngle)*(Z-zmax/2) > (0)))\n", " RayAfter = (-Y + PCentre - np.tan(PAngle)*(Z-zmax/2) < (0))\n", "\n", " R1 = Ray(Z,Y,ZR1,YR1,0.05,BAngle) * RayBefore\n", " Intensity = R1.real * R1.real + R1.imag * R1.imag\n", " R += Intensity\n", " G += Intensity\n", " B += Intensity\n", " R2 = Ray(Z,Y,ZR2,YR2,0.05,BAngle2) * RayInside\n", " Intensity = R2.real * R2.real + R2.imag * R2.imag\n", " R += Intensity\n", " G += Intensity\n", " B += Intensity\n", " R3 = Ray(Z,Y,ZR3,YR3,0.05,-BAngle3) * RayAfter\n", " Intensity = R3.real * R3.real + R3.imag * R3.imag\n", " R += Intensity\n", " G += Intensity\n", " B += Intensity\n", "\n", "R+=0.25*(Index-1)*Prism # add prism to final image\n", "G+=0.25*(Index-1)*Prism\n", "B+=0.25*(Index-1)*Prism\n", "\n", "br=1.0 \n", "bg=1.0 \n", "bb=1.0 \n", "\n", "R=np.clip(br*R,0.0,1.0)\n", "G=np.clip(bg*G,0.0,1.0)\n", "B=np.clip(bb*B,0.0,1.0)\n", "RGB=np.dstack((np.flipud(R.T), np.flipud(G.T), np.flipud(B.T))) # use transpose to swap image axes, flipud to origin at bottom left\n", "\n", "ax1.imshow(RGB)\n", "ax1.set_axis_off()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 4 }